Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset.
|
2 |
+
|
3 |
+
This version of the weights was trained with the following hyperparameters:
|
4 |
+
|
5 |
+
[Cleaned dataset](https://github.com/gururise/AlpacaDataCleaned): Snapshot March 31, 2023
|
6 |
+
Epochs: 3
|
7 |
+
Validation set size: 2000
|
8 |
+
Batch size: 128
|
9 |
+
Micro batch size: 12
|
10 |
+
Cutoff length: 512
|
11 |
+
Learning rate: 3e-4
|
12 |
+
Lora r: 8
|
13 |
+
Lora target modules: q_proj, v_proj
|
14 |
+
|
15 |
+
That is:
|
16 |
+
|
17 |
+
python finetune.py \
|
18 |
+
--base_model='decapoda-research/llama-7b-hf' \
|
19 |
+
--data_path 'yahma/alpaca-cleaned' \
|
20 |
+
--num_epochs=3 \
|
21 |
+
--cutoff_len=512 \
|
22 |
+
--output_dir='./lora-alpaca' \
|
23 |
+
--lora_target_modules='[q_proj,v_proj]' \
|
24 |
+
--lora_r=8 \
|
25 |
+
--val_set_size 2000 \
|
26 |
+
--micro_batch_size=12
|
27 |
+
|