--- license: mit datasets: - yahma/alpaca-cleaned --- This repo contains a low-rank adapter for LLaMA-7b fit on the Cleaned Alpaca dataset (with the new GPT-4 training data). This version of the weights was trained with the following hyperparameters: Cleaned dataset: Snapshot April 8, 2023 Epochs: 6 (Checkpoint with lowest eval loss at 3.6 epochs uploaded here) Validation set size: 1500 Batch size: 128 Micro batch size: 8 Cutoff length: 512 Learning rate: 3e-4 Lora r: 16 Lora target modules: q_proj, k_proj, v_proj, o_proj That is: python finetune.py \ --base_model='yahma/llama-7b-hf' \ --data_path 'yahma/alpaca-cleaned' \ --num_epochs=6 \ --cutoff_len=512 \ --output_dir='./lora-alpaca' \ --lora_target_modules='[q_proj,k_proj, v_proj, o_proj]' \ --lora_r=16 \ --val_set_size 1500 \ --micro_batch_size=8