File size: 2,302 Bytes
11b49f8
 
 
 
 
 
 
 
 
 
 
 
804809b
11b49f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: llama3
datasets:
- BAAI/Infinity-Instruct
base_model:
- meta-llama/Meta-Llama-3.1-8B-Instruct
---

We prune the Llama-3.1-8B-Instruct to 1.4B and fine-tune it with LLM-Neo method,which combines LoRA and KD in one. Training data is sampling from BAAI/Infinity-Instruct for 1 Million lines.

## Benchmarks 

In this section, we report the results for Llama3.1-Neo-1B-100w on standard automatic benchmarks. For all the evaluations, we use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) library.

### Evaluation results

<table>
  <tr>
   <td><strong>Category</strong>
   </td>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Version</strong>
   </td>
   <td><strong>n-shot</strong>
   </td>
   <td><strong>Metric</strong>
   </td>
   <td><strong>Value</strong>
   </td>
   <td><strong>Stderr</strong>
   </td>
  </tr>
  <tr>
   <td rowspan="2" >ARC
   </td>
   <td>ARC-Challenge</td>
   <td>1</td>
   <td>0</td>
   <td>acc</td>
   <td>0.1920</td>
   <td>± 0.0115</td>
  </tr>
  <tr>
   <td>ARC-Easy</td>
   <td>1</td>
   <td>0</td>
   <td>acc</td>
   <td>0.3834</td>
   <td>± 0.0100</td>
  </tr>
  <tr>
   <td rowspan="3" >CEVAL</td>
   <td>CEVAL (valid)</td>
   <td>N/A</td>
   <td>0</td>
   <td>acc</td>
   <td>0.2370</td>
   <td>± 0.0117</td>
  </tr>
  <tr>
   <td>CEVAL (Accountant)</td>
   <td>1</td>
   <td>0</td>
   <td>acc</td>
   <td>0.2449</td>
   <td>± 0.0621</td>
  </tr>
  <tr>
   <td>CEVAL (Advanced Mathematics)</td>
   <td>1</td>
   <td>0</td>
   <td>acc</td>
   <td>0.3158</td>
   <td>± 0.1096</td>
  </tr>
  <tr>
   <td rowspan="2" >MMLU</td>
   <td>MMLU</td>
   <td>N/A</td>
   <td>0</td>
   <td>acc</td>
   <td>0.2439</td>
   <td>± 0.0036</td>
  </tr>
  <tr>
   <td>MMLU (Abstract Algebra)</td>
   <td>0</td>
   <td>0</td>
   <td>acc</td>
   <td>0.2500</td>
   <td>± 0.0435</td>
  </tr>
  <tr>
   <td rowspan="2" >PIQA</td>
   <td>PIQA</td>
   <td>1</td>
   <td>0</td>
   <td>acc</td>
   <td>0.5843</td>
   <td>± 0.0115</td>
  </tr>
  <tr>
   <td>PIQA (Normalized)</td>
   <td>1</td>
   <td>0</td>
   <td>acc_norm</td>
   <td>0.5822</td>
   <td>± 0.0115</td>
  </tr>
  <tr>
   <td>Winogrande</td>
   <td>Winogrande</td>
   <td>1</td>
   <td>0</td>
   <td>acc</td>
   <td>0.5249</td>
   <td>± 0.0140</td>
  </tr>
</table>