--- license: llama3 datasets: - BAAI/Infinity-Instruct base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct --- We prune the Llama-3.1-8B-Instruct to 1.4B and fine-tune it with LLM-Neo method,which combines LoRA and KD in one. Training data is sampling from BAAI/Infinity-Instruct for 1 Million lines. ## Benchmarks In this section, we report the results for Llama3.1-Neo-1B-100w on standard automatic benchmarks. For all the evaluations, we use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) library. ### Evaluation results
Category | Benchmark | Version | n-shot | Metric | Value | Stderr |
ARC | ARC-Challenge | 1 | 0 | acc | 0.1920 | ± 0.0115 |
ARC-Easy | 1 | 0 | acc | 0.3834 | ± 0.0100 | |
CEVAL | CEVAL (valid) | N/A | 0 | acc | 0.2370 | ± 0.0117 |
CEVAL (Accountant) | 1 | 0 | acc | 0.2449 | ± 0.0621 | |
CEVAL (Advanced Mathematics) | 1 | 0 | acc | 0.3158 | ± 0.1096 | |
MMLU | MMLU | N/A | 0 | acc | 0.2439 | ± 0.0036 |
MMLU (Abstract Algebra) | 0 | 0 | acc | 0.2500 | ± 0.0435 | |
PIQA | PIQA | 1 | 0 | acc | 0.5843 | ± 0.0115 |
PIQA (Normalized) | 1 | 0 | acc_norm | 0.5822 | ± 0.0115 | |
Winogrande | Winogrande | 1 | 0 | acc | 0.5249 | ± 0.0140 |