yangboyuan commited on
Commit
02ffff0
1 Parent(s): 09191a7

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: google/vivit-b-16x2-kinetics400
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vivit-b-16x2-kinetics400-finetuned-vivit-diagnose
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vivit-b-16x2-kinetics400-finetuned-vivit-diagnose
17
+
18
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.8988
21
+ - Accuracy: 0.6953
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 3430
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 1.8386 | 0.1 | 343 | 1.5448 | 0.5448 |
54
+ | 1.1419 | 1.1 | 686 | 1.2918 | 0.5412 |
55
+ | 0.778 | 2.1 | 1029 | 1.4229 | 0.7240 |
56
+ | 0.7591 | 3.1 | 1372 | 1.5418 | 0.6918 |
57
+ | 0.8103 | 4.1 | 1715 | 1.3608 | 0.6810 |
58
+ | 0.3701 | 5.1 | 2058 | 1.6575 | 0.6810 |
59
+ | 0.2027 | 6.1 | 2401 | 1.8233 | 0.6774 |
60
+ | 0.0002 | 7.1 | 2744 | 1.9324 | 0.6738 |
61
+ | 0.1793 | 8.1 | 3087 | 1.8483 | 0.6953 |
62
+ | 0.0007 | 9.1 | 3430 | 1.8988 | 0.6953 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.42.4
68
+ - Pytorch 2.0.1+cu117
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.19.1