--- license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vivit-b-16x2-kinetics400-finetuned-vivit-diagnose results: [] --- # vivit-b-16x2-kinetics400-finetuned-vivit-diagnose This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8988 - Accuracy: 0.6953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3430 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8386 | 0.1 | 343 | 1.5448 | 0.5448 | | 1.1419 | 1.1 | 686 | 1.2918 | 0.5412 | | 0.778 | 2.1 | 1029 | 1.4229 | 0.7240 | | 0.7591 | 3.1 | 1372 | 1.5418 | 0.6918 | | 0.8103 | 4.1 | 1715 | 1.3608 | 0.6810 | | 0.3701 | 5.1 | 2058 | 1.6575 | 0.6810 | | 0.2027 | 6.1 | 2401 | 1.8233 | 0.6774 | | 0.0002 | 7.1 | 2744 | 1.9324 | 0.6738 | | 0.1793 | 8.1 | 3087 | 1.8483 | 0.6953 | | 0.0007 | 9.1 | 3430 | 1.8988 | 0.6953 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.0.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1