yangheng yundai424 commited on
Commit
319caf5
·
verified ·
1 Parent(s): 3ea8f1a

Update README to remove blank line at top (#2)

Browse files

- Update README to remove blank line at top (4913ad1888486ea506108aa8cb4e3c2464149194)


Co-authored-by: Yun Dai <yundai424@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +77 -78
README.md CHANGED
@@ -1,79 +1,78 @@
1
-
2
- ---
3
- language:
4
- - en
5
- tags:
6
- - aspect-based-sentiment-analysis
7
- - PyABSA
8
- license: mit
9
- datasets:
10
- - laptop14
11
- - restaurant14
12
- - restaurant16
13
- - ACL-Twitter
14
- - MAMS
15
- - Television
16
- - TShirt
17
- - Yelp
18
- metrics:
19
- - accuracy
20
- - macro-f1
21
- widget:
22
- - text: "[CLS] when tables opened up, the manager sat another party before us. [SEP] manager [SEP] "
23
- ---
24
-
25
- # Note
26
- This model is training with 30k+ ABSA samples, see [ABSADatasets](https://github.com/yangheng95/ABSADatasets). Yet the test sets are not included in pre-training, so you can use this model for training and benchmarking on common ABSA datasets, e.g., Laptop14, Rest14 datasets. (Except for the Rest15 dataset!)
27
-
28
- # DeBERTa for aspect-based sentiment analysis
29
- The `deberta-v3-large-absa` model for aspect-based sentiment analysis, trained with English datasets from [ABSADatasets](https://github.com/yangheng95/ABSADatasets).
30
-
31
- ## Training Model
32
- This model is trained based on the FAST-LCF-BERT model with `microsoft/deberta-v3-large`, which comes from [PyABSA](https://github.com/yangheng95/PyABSA).
33
- To track state-of-the-art models, please see [PyASBA](https://github.com/yangheng95/PyABSA).
34
-
35
- ## Usage
36
- ```python3
37
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
38
-
39
- tokenizer = AutoTokenizer.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
40
-
41
- model = AutoModelForSequenceClassification.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
42
- ```
43
-
44
- ## Example in PyASBA
45
- An [example](https://github.com/yangheng95/PyABSA/blob/release/demos/aspect_polarity_classification/train_apc_multilingual.py) for using FAST-LCF-BERT in PyASBA datasets.
46
-
47
- ## Datasets
48
- This model is fine-tuned with 180k examples for the ABSA dataset (including augmented data). Training dataset files:
49
- ```
50
- loading: integrated_datasets/apc_datasets/SemEval/laptop14/Laptops_Train.xml.seg
51
- loading: integrated_datasets/apc_datasets/SemEval/restaurant14/Restaurants_Train.xml.seg
52
- loading: integrated_datasets/apc_datasets/SemEval/restaurant16/restaurant_train.raw
53
- loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/train.raw
54
- loading: integrated_datasets/apc_datasets/MAMS/train.xml.dat
55
- loading: integrated_datasets/apc_datasets/Television/Television_Train.xml.seg
56
- loading: integrated_datasets/apc_datasets/TShirt/Menstshirt_Train.xml.seg
57
- loading: integrated_datasets/apc_datasets/Yelp/yelp.train.txt
58
-
59
- ```
60
- If you use this model in your research, please cite our paper:
61
- ```
62
- @article{YangZMT21,
63
- author = {Heng Yang and
64
- Biqing Zeng and
65
- Mayi Xu and
66
- Tianxing Wang},
67
- title = {Back to Reality: Leveraging Pattern-driven Modeling to Enable Affordable
68
- Sentiment Dependency Learning},
69
- journal = {CoRR},
70
- volume = {abs/2110.08604},
71
- year = {2021},
72
- url = {https://arxiv.org/abs/2110.08604},
73
- eprinttype = {arXiv},
74
- eprint = {2110.08604},
75
- timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
76
- biburl = {https://dblp.org/rec/journals/corr/abs-2110-08604.bib},
77
- bibsource = {dblp computer science bibliography, https://dblp.org}
78
- }
79
  ```
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - aspect-based-sentiment-analysis
6
+ - PyABSA
7
+ license: mit
8
+ datasets:
9
+ - laptop14
10
+ - restaurant14
11
+ - restaurant16
12
+ - ACL-Twitter
13
+ - MAMS
14
+ - Television
15
+ - TShirt
16
+ - Yelp
17
+ metrics:
18
+ - accuracy
19
+ - macro-f1
20
+ widget:
21
+ - text: "[CLS] when tables opened up, the manager sat another party before us. [SEP] manager [SEP] "
22
+ ---
23
+
24
+ # Note
25
+ This model is training with 30k+ ABSA samples, see [ABSADatasets](https://github.com/yangheng95/ABSADatasets). Yet the test sets are not included in pre-training, so you can use this model for training and benchmarking on common ABSA datasets, e.g., Laptop14, Rest14 datasets. (Except for the Rest15 dataset!)
26
+
27
+ # DeBERTa for aspect-based sentiment analysis
28
+ The `deberta-v3-large-absa` model for aspect-based sentiment analysis, trained with English datasets from [ABSADatasets](https://github.com/yangheng95/ABSADatasets).
29
+
30
+ ## Training Model
31
+ This model is trained based on the FAST-LCF-BERT model with `microsoft/deberta-v3-large`, which comes from [PyABSA](https://github.com/yangheng95/PyABSA).
32
+ To track state-of-the-art models, please see [PyASBA](https://github.com/yangheng95/PyABSA).
33
+
34
+ ## Usage
35
+ ```python3
36
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
39
+
40
+ model = AutoModelForSequenceClassification.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
41
+ ```
42
+
43
+ ## Example in PyASBA
44
+ An [example](https://github.com/yangheng95/PyABSA/blob/release/demos/aspect_polarity_classification/train_apc_multilingual.py) for using FAST-LCF-BERT in PyASBA datasets.
45
+
46
+ ## Datasets
47
+ This model is fine-tuned with 180k examples for the ABSA dataset (including augmented data). Training dataset files:
48
+ ```
49
+ loading: integrated_datasets/apc_datasets/SemEval/laptop14/Laptops_Train.xml.seg
50
+ loading: integrated_datasets/apc_datasets/SemEval/restaurant14/Restaurants_Train.xml.seg
51
+ loading: integrated_datasets/apc_datasets/SemEval/restaurant16/restaurant_train.raw
52
+ loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/train.raw
53
+ loading: integrated_datasets/apc_datasets/MAMS/train.xml.dat
54
+ loading: integrated_datasets/apc_datasets/Television/Television_Train.xml.seg
55
+ loading: integrated_datasets/apc_datasets/TShirt/Menstshirt_Train.xml.seg
56
+ loading: integrated_datasets/apc_datasets/Yelp/yelp.train.txt
57
+
58
+ ```
59
+ If you use this model in your research, please cite our paper:
60
+ ```
61
+ @article{YangZMT21,
62
+ author = {Heng Yang and
63
+ Biqing Zeng and
64
+ Mayi Xu and
65
+ Tianxing Wang},
66
+ title = {Back to Reality: Leveraging Pattern-driven Modeling to Enable Affordable
67
+ Sentiment Dependency Learning},
68
+ journal = {CoRR},
69
+ volume = {abs/2110.08604},
70
+ year = {2021},
71
+ url = {https://arxiv.org/abs/2110.08604},
72
+ eprinttype = {arXiv},
73
+ eprint = {2110.08604},
74
+ timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
75
+ biburl = {https://dblp.org/rec/journals/corr/abs-2110-08604.bib},
76
+ bibsource = {dblp computer science bibliography, https://dblp.org}
77
+ }
 
78
  ```