yangheng commited on
Commit
efcde03
1 Parent(s): a508ea1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -1,3 +1,79 @@
 
1
  ---
 
 
 
 
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - en
5
+ tags:
6
+ - aspect-based-sentiment-analysis
7
+ - PyABSA
8
  license: mit
9
+ datasets:
10
+ - laptop14
11
+ - restaurant14
12
+ - restaurant16
13
+ - ACL-Twitter
14
+ - MAMS
15
+ - Television
16
+ - TShirt
17
+ - Yelp
18
+ metrics:
19
+ - accuracy
20
+ - macro-f1
21
+ widget:
22
+ - text: "[CLS] when tables opened up, the manager sat another party before us. [SEP] manager [SEP] "
23
  ---
24
+
25
+ # Note
26
+ This model is training with 30k+ ABSA samples, see [ABSADatasets](https://github.com/yangheng95/ABSADatasets). Yet the test sets are not included in pre-training, so you can use this model for training and benchmarking on common ABSA datasets, e.g., Laptop14, Rest14 datasets. (Except for the Rest15 dataset!)
27
+
28
+ # DeBERTa for aspect-based sentiment analysis
29
+ The `deberta-v3-large-absa` model for aspect-based sentiment analysis, trained with English datasets from [ABSADatasets](https://github.com/yangheng95/ABSADatasets).
30
+
31
+ ## Training Model
32
+ This model is trained based on the FAST-LCF-BERT model with `microsoft/deberta-v3-large`, which comes from [PyABSA](https://github.com/yangheng95/PyABSA).
33
+ To track state-of-the-art models, please see [PyASBA](https://github.com/yangheng95/PyABSA).
34
+
35
+ ## Usage
36
+ ```python3
37
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
40
+
41
+ model = AutoModelForSequenceClassification.from_pretrained("yangheng/deberta-v3-large-absa-v1.1")
42
+ ```
43
+
44
+ ## Example in PyASBA
45
+ An [example](https://github.com/yangheng95/PyABSA/blob/release/demos/aspect_polarity_classification/train_apc_multilingual.py) for using FAST-LCF-BERT in PyASBA datasets.
46
+
47
+ ## Datasets
48
+ This model is fine-tuned with 180k examples for the ABSA dataset (including augmented data). Training dataset files:
49
+ ```
50
+ loading: integrated_datasets/apc_datasets/SemEval/laptop14/Laptops_Train.xml.seg
51
+ loading: integrated_datasets/apc_datasets/SemEval/restaurant14/Restaurants_Train.xml.seg
52
+ loading: integrated_datasets/apc_datasets/SemEval/restaurant16/restaurant_train.raw
53
+ loading: integrated_datasets/apc_datasets/ACL_Twitter/acl-14-short-data/train.raw
54
+ loading: integrated_datasets/apc_datasets/MAMS/train.xml.dat
55
+ loading: integrated_datasets/apc_datasets/Television/Television_Train.xml.seg
56
+ loading: integrated_datasets/apc_datasets/TShirt/Menstshirt_Train.xml.seg
57
+ loading: integrated_datasets/apc_datasets/Yelp/yelp.train.txt
58
+
59
+ ```
60
+ If you use this model in your research, please cite our paper:
61
+ ```
62
+ @article{YangZMT21,
63
+ author = {Heng Yang and
64
+ Biqing Zeng and
65
+ Mayi Xu and
66
+ Tianxing Wang},
67
+ title = {Back to Reality: Leveraging Pattern-driven Modeling to Enable Affordable
68
+ Sentiment Dependency Learning},
69
+ journal = {CoRR},
70
+ volume = {abs/2110.08604},
71
+ year = {2021},
72
+ url = {https://arxiv.org/abs/2110.08604},
73
+ eprinttype = {arXiv},
74
+ eprint = {2110.08604},
75
+ timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
76
+ biburl = {https://dblp.org/rec/journals/corr/abs-2110-08604.bib},
77
+ bibsource = {dblp computer science bibliography, https://dblp.org}
78
+ }
79
+ ```