File size: 8,957 Bytes
0d8fad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b3477
0d8fad7
 
 
 
 
 
 
 
 
 
 
 
59b3477
0d8fad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
library_name: transformers
tags:
  - translation
license: gemma
language:
  - ar
  - bg
  - zh
  - cs
  - da
  - nl
  - en
  - fi
  - fr
  - de
  - el
  - gu
  - he
  - hi
  - hu
  - id
  - it
  - ja
  - ko
  - fa
  - pl
  - pt
  - ro
  - ru
  - sk
  - es
  - sv
  - tl
  - th
  - tr
  - uk
  - vi
---

# YanoljaNEXT-Rosetta-4B-2511

<p style="text-align: center; margin: 0 auto 64px">
  <img src="next_rosetta.png" style="width: 1096px">
</p>

This model is a fine-tuned version of [`google/gemma-3-4b-pt`](https://huggingface.co/google/gemma-3-4b-pt). As it is intended solely for text generation, we have extracted and utilized only the `Gemma3ForCausalLM` component from the original architecture.

Unlike our previous EEVE models, this model does not feature an expanded tokenizer.

- **Model Name:** `yanolja/YanoljaNEXT-Rosetta-4B-2511`
- **Base Model:** `google/gemma-3-4b-pt`

## Model Description

This model is a 4-billion parameter, decoder-only language model built on the Gemma3 architecture and fine-tuned by Yanolja NEXT. It is specifically designed to translate structured data (JSON, YAML, XML formats) while preserving the original data structure.

The model was trained on a multilingual dataset covering the following languages equally:
- Arabic
- Bulgarian
- Chinese
- Czech
- Danish
- Dutch
- English
- Finnish
- French
- German
- Greek
- Gujarati
- Hebrew
- Hindi
- Hungarian
- Indonesian
- Italian
- Japanese
- Korean
- Persian
- Polish
- Portuguese
- Romanian
- Russian
- Slovak
- Spanish
- Swedish
- Tagalog
- Thai
- Turkish
- Ukrainian
- Vietnamese

While optimized for these languages, it may also perform effectively on other languages supported by the base Gemma3 model.

## How to use

You can use this model with the `transformers` library as follows:

```python
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "yanolja/YanoljaNEXT-Rosetta-4B-2511"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    dtype=torch.bfloat16,
    device_map="auto",
    max_memory={0: "23GB"},
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

target_language = "Korean"
context = {
  "context": "Simple introduction about a tech company.",
  "tone": "Informative and helpful",
  "glossary": {
    "Yanolja NEXT": "์•ผ๋†€์ž๋„ฅ์ŠคํŠธ",
    "travel industry": "์—ฌํ–‰ ์‚ฐ์—…",
  }
}

system = [f"Translate the user's text to {target_language}."]
for key, value in context.items():
  key_pascal = key.capitalize()
  if isinstance(value, dict):
    system.append(f"{key_pascal}:")
    for f, t in value.items():
      system.append(f"- {f} -> {t}")
  else:
    system.append(f"{key_pascal}: {value}")

system.append("Output format: JSON")
system.append("Provide the final translation immediately without any other text.")

source = {
  "company_name": "Yanolja NEXT",
  "description": "Yanolja NEXT is a company that provides cutting-edge "
                 "technology for the global travel industry.",
}

messages = [
    {"role": "system", "content": "\n".join(system)},
    {"role": "user", "content": json.dumps(source, ensure_ascii=False)},
]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(prompt)
# <bos><start_of_turn>instruction
# Translate the user's text to Korean.
# Context: Simple introduction about a tech company.
# Tone: Informative and helpful
# Glossary:
# - Yanolja NEXT -> ์•ผ๋†€์ž๋„ฅ์ŠคํŠธ
# - travel industry -> ์—ฌํ–‰ ์‚ฐ์—…
# Output format: JSON
# Provide the final translation immediately without any other text.<end_of_turn>
# <start_of_turn>source
# {"company_name": "Yanolja NEXT", "description": "Yanolja NEXT is a company that provides cutting-edge technology for the global travel industry."}<end_of_turn>
# <start_of_turn>translation

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
input_length = inputs["input_ids"].shape[1]

with torch.inference_mode():
    outputs = model.generate(
        **inputs,
        max_new_tokens=64,
    )

generated_tokens = outputs[0][input_length:]
translation = tokenizer.decode(generated_tokens, skip_special_tokens=True)

print(json.dumps(json.loads(translation), indent=2, ensure_ascii=False))
# {
#   "company_name": "์•ผ๋†€์ž๋„ฅ์ŠคํŠธ",
#   "description": "์•ผ๋†€์ž๋„ฅ์ŠคํŠธ๋Š” ๊ธ€๋กœ๋ฒŒ ์—ฌํ–‰ ์‚ฐ์—…์— ์ตœ์ฒจ๋‹จ ๊ธฐ์ˆ ์„ ์ œ๊ณตํ•˜๋Š” ํšŒ์‚ฌ์ž…๋‹ˆ๋‹ค."
# }
```

The model outputs the final translation in the same structured format as the input (JSON, YAML, XML) when appropriate, or plain text for simple translations.

## Training Procedure

### Training Data
The translation datasets were synthesized using fineweb corpora.
- [FineWeb Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [FineWeb2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2)

The model was fine-tuned on synthetic multilingual translation data to optimize performance across the supported language pairs.

## Performance

### Translation Quality Benchmarks

The following CHrF++ scores (WMT24++) demonstrate the model's competitive performance compared to other state-of-the-art translation models on English to Korean translation:

| Model                              | CHrF++ Score (WMT24++) |
|------------------------------------|--------------|
| openai/gpt-4o                       | 36.08     |
| **yanolja/YanoljaNEXT-Rosetta-4B-2511** | **35.64**    |
| google/gemini-2.5-flash             | 35.25     |
| **yanolja/YanoljaNEXT-Rosetta-4B-2510** | **35.09**    |
| tencent/Hunyuan-MT-7B               | 34.76     |
| yanolja/YanoljaNEXT-Rosetta-20B     | 33.87        |
| AIDC-AI/Marco-MT-Algharb            | 33.40        |
| openai/gpt-oss-120b                 | 31.51        |
| **yanolja/YanoljaNEXT-Rosetta-4B** | **31.31**    |
| ByteDance-Seed/Seed-X-PPO-7B        | 30.48        |
| google/gemma-3-27b-it               |        30.05 |
| google/gemma-3-12b-it               |        29.31 |
| google/gemma-3-4b-it                |        27.53 |

YanoljaNEXT-Rosetta-4B-2511 achieves competitive translation quality while maintaining the efficiency of a 4B parameter model.
Scores for the other language pairs can be found in the [WMT24++ Evaluation Results](wmt24pp_12b.md).

## Intended Uses & Limitations

This model is intended for translating structured data (JSON, YAML, XML formats) while preserving the original structure. It is particularly well-suited for tasks such as localizing product catalogs, translating hotel reviews, or handling any other structured content that requires accurate translation.

### Limitations
The model is primarily optimized for processing structured data (JSON, YAML, XML).
Its performance on unstructured text or other data formats may vary.
In some cases, the model may produce invalid JSON, repetitive output, or inaccurate translations.

### License
This model is released under the Gemma license, inherited from its base model, [`google/gemma-3-4b-pt`](https://huggingface.co/google/gemma-3-4b-pt). Please consult the official [Gemma license terms](https://ai.google.dev/gemma/terms) for detailed usage guidelines.

## Acknowledgments
This work was supported by the Korea Creative Content Agency (KOCCA) grant, funded by the Ministry of Culture, Sports and Tourism (MCST) in 2025 (Project Name: _Cultivating Masters and Doctoral Experts to Lead Digital-Tech Tourism_, Project Number: RS-2024-00442006, Contribution Rate: 100%).

## Citation

If you use this model, please consider citing:

```
@misc{yanolja2025yanoljanextrosetta,
  author = {Yanolja NEXT Co., Ltd.},
  title = {YanoljaNEXT-Rosetta-4B-2511},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  howpublished = {\\url{https://huggingface.co/yanolja/YanoljaNEXT-Rosetta-4B-2511}}
}
```

## References

This work utilizes several models and datasets. We would like to acknowledge the original authors for their valuable contributions to the field.

```
@misc{gemma3,
  author = {Google},
  title = {Gemma 3},
  year = {2024},
  publisher = {Google DeepMind},
  howpublished = {\\url{https://deepmind.google/models/gemma/gemma-3/}}
}

@misc{penedo2025fineweb2pipelinescale,
  title = {FineWeb2: One Pipeline to Scale Them All -- Adapting Pre-Training Data Processing to Every Language}, 
  author = {Guilherme Penedo and Hynek Kydlรญฤek and Vinko Sabolฤec and Bettina Messmer and Negar Foroutan and Amir Hossein Kargaran and Colin Raffel and Martin Jaggi and Leandro Von Werra and Thomas Wolf},
  year = {2025},
  eprint = {2506.20920},
  archivePrefix = {arXiv},
  primaryClass = {cs.CL},
  url = {https://arxiv.org/abs/2506.20920},
}

@misc{lozhkov2024fineweb-edu,
  author = {Lozhkov, Anton and Ben Allal, Loubna and von Werra, Leandro and Wolf, Thomas},
  title = {FineWeb-Edu: the Finest Collection of Educational Content},
  year = 2024,
  url = {https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu},
  doi = {10.57967/hf/2497},
  publisher={Hugging Face}
}
```