File size: 2,628 Bytes
fa7405d
 
6efb9bb
 
 
189e2ef
e2bbebd
189e2ef
 
 
e2bbebd
 
dabf1d4
 
60e4a33
dabf1d4
2511426
 
 
 
 
 
 
 
5e02dcd
2511426
 
 
 
 
 
 
 
 
 
 
6dfcfb7
2511426
a5d4d9e
2511426
 
 
bafe458
2511426
 
 
 
 
 
 
 
 
78de1e0
2511426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6836d8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
language:
- en
- zh
datasets:
- teknium/OpenHermes-2.5
pipeline_tag: text-generation
tags:
- llama
- latest
library_name: transformers
---

![image/webp](https://cdn-uploads.huggingface.co/production/uploads/64ef2a96f2b8f40224d7b407/C7hdFdUqx88oRu_IpcCZi.webp)

Gigi 是使用最先进的 Llama-3-8B-Instruct 在超过130万条经过筛选的高质量中英双语语料上进行精调,它能更好地处理各种下游任务,并为您提供高质量的中英双语结果。我们在训练中加入了包含Hermes、glaive-function-calling等高质量的指令精调数据,以及大量使用GPT3.5翻译的GPT4数据,Gigi能很好的在中英双语上满足您的需求。

# Gigi-Llama-3-8B-zh

Gigi-Llama-3-8B-zh 是 Gigi 系列的第一个模型,在Hermes、glaive-function-calling、refgpt_fact_v2数据集以及一部分使用GPT3.5翻译成的中文数据上训练,同时改进了模型在中英文上的行为,还加入了COIG-CQIA、alpaca-gpt4-data-zh等中文数据集进一步增强中文能力。

# How to use

Gigi-Llama-3-8B-zh 遵循 Llama-3-8B-Instruct 的对话模板,pad token 使用 `<|end_of_text|>````
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>

{{ user_msg_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{{ model_answer_1 }}<|eot_id|>
```

您可以使用下面代码加载模型推理,对于更高效的推理建议使用vLLM,我们随后会介绍模型的具体性能,并很快更新更大参数和性能更好的精调版本。

```python
import transformers
import torch

model_id = "yaojialzc/Gigi-Llama-3-8B-zh"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)

messages = [
    {"role": "user", "content": "请给我写一个很长的故事"},
]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```

llama 3 似乎在设置eos token时有一些问题,导致模型输出 eot 时不会停止,无法开箱即用。我们暂时尊重官方的行为,精调时指导模型在最后输出 end_of_text,方便目前开箱即用地在下游领域精调。