ppo-LunarLander-v2 / config.json
yashgharat's picture
Unit1 of the HF Certification
08d0f04
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92348cd6c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92348cd750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92348cd7e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92348cd870>", "_build": "<function ActorCriticPolicy._build at 0x7f92348cd900>", "forward": "<function ActorCriticPolicy.forward at 0x7f92348cd990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92348cda20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92348cdab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92348cdb40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92348cdbd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92348cdc60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92348cdcf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f92348d4f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687631694903679864, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1Hhj0UNoO6RkMNNCKdsK54xgA7mPCTswAAgD8AAIA/JouBvUOkU7z0Ikw9U0ApvVP8q7y9L5K+AACAPwAAgD/A7OM9xn0qPxooPjw1tei+OhnaPfDKAb4AAAAAAAAAAE1+t70AHwo/2T0CO/QE4b6NNYy8ujx6PQAAAAAAAAAAAJwMveyJq7lWj6e0ScSVrykXz7q8PkUzAACAPwAAgD8zifk86jS2P1T6Fz4BfHS+hiPBPJpNhTsAAAAAAAAAAIBkiz6J9FE/oTy+Pl62Kb9yg/c+ZamiPQAAAAAAAAAAc5z+PfczLT7Skva91R+ovj/nsjzYDmK9AAAAAAAAAADAGFg+Mw03P6zGsz2z5he/OOaNPrVXz70AAAAAAAAAAI0Cob3YcpQ/K/suvinYBb8j/Bm+uc2dvQAAAAAAAAAAmrHqvcuPiD3FsdM9g8ugvqVZtDwuCR89AAAAAAAAAACmPtq9TEaiP92e375/0gq/2CxIvhJ7tr4AAAAAAAAAAI26oj1xoRS79nJKvJqInzznSmq8kBCJPQAAgD8AAIA/5mIKvaF9hD8UCEy9tzEGv2+qAb1i1588AAAAAAAAAAAAliM85HGwP9Oo4D2/l4i+armhPIodIz0AAAAAAAAAAM3A3Tuk8C44MTiKtWzwgLAf39a7TBXCNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/KMHKOktWMAWyUS8iMAXSUR0CiQRUkfLcLdX2UKGgGR0Bw7fWTX8O1aAdL8WgIR0CiQS1bqyGBdX2UKGgGR0BxN6qBEroXaAdL32gIR0CiQU/axoqTdX2UKGgGR0Bux8HKOktVaAdLymgIR0CiQayJ9AoodX2UKGgGR0ByDjqiXY16aAdL5mgIR0CiQdv7m+0xdX2UKGgGR0Bz9iXXyy2QaAdLxWgIR0CiQuGkep4sdX2UKGgGR0BuM1eSjgyeaAdL1GgIR0CiQzShi9ZidX2UKGgGR0By+3fO2RaHaAdL8GgIR0CiQ1PS+g14dX2UKGgGR0BxSNMCcPOIaAdLwmgIR0CiQ0+2mYShdX2UKGgGR0BvM+5Dqnm8aAdL0GgIR0CiQ56AFxGUdX2UKGgGR0BwIuvV3EAHaAdL1GgIR0CiQ6L7GecydX2UKGgGR0ByCsIBzV+aaAdLxWgIR0CiQ7j+R5kcdX2UKGgGR0BxXA3AEdNnaAdL2mgIR0CiQ7gw482adX2UKGgGR0BxMZKDkELZaAdLxWgIR0CiQ/kl3QlbdX2UKGgGR0BvMmReTmnwaAdLy2gIR0CiREyh8IAwdX2UKGgGR0BiSiuuA7PqaAdN6ANoCEdAokRg7kn1F3V9lChoBkdAcp3NsWO6umgHS/RoCEdAokS3wgDA8HV9lChoBkdAcM9bvw3HaWgHS9NoCEdAokTC0WuX/3V9lChoBkdAZX15ooNNJ2gHTegDaAhHQKJE1VrhzeZ1fZQoaAZHQHISliWmgrZoB0vhaAhHQKJFEIBRyfd1fZQoaAZHQHAm+40/GERoB0vVaAhHQKJFwfseGPB1fZQoaAZHQHHecZk078xoB0vQaAhHQKJF9apPykN1fZQoaAZHQG7gJBomG/NoB0vLaAhHQKJF+2WIGhV1fZQoaAZHQHEA/8yeqaRoB0u0aAhHQKJGCTPBzmx1fZQoaAZHQHB3hSUC7shoB0vVaAhHQKJGI1gH/tJ1fZQoaAZHQHHeS3b212JoB0vFaAhHQKJGMQHzH0d1fZQoaAZHQHM1AizLOiZoB0vGaAhHQKJGQ54GD+R1fZQoaAZHQG+gXrUsnRdoB0vfaAhHQKJGgLc9GI91fZQoaAZHQHAQyx3V091oB0u6aAhHQKJGn8R+SbJ1fZQoaAZHQHNz8efZmI1oB0vbaAhHQKJGwIiTt9h1fZQoaAZHQHFigh0Qsf9oB0vUaAhHQKJHWuV5a/11fZQoaAZHQHKxvddmg8NoB0vxaAhHQKJHWOqebut1fZQoaAZHQHHsvOUt7KJoB0vbaAhHQKJHZ/e+Eh91fZQoaAZHQHEnaK+BYmtoB0vTaAhHQKJHbG2kSEl1fZQoaAZHQG/xQ1aW5YpoB0v3aAhHQKJILNs3yZt1fZQoaAZHQHKlEnogV45oB0vAaAhHQKJIM3BpHqh1fZQoaAZHQHLn+54GD+RoB0u6aAhHQKJIiI1tO211fZQoaAZHQHHt7OeJ53VoB0vGaAhHQKJIiu9OARV1fZQoaAZHQHH3f7SApa1oB0vLaAhHQKJIlt65Xlt1fZQoaAZHQG7SqD9OymhoB0vMaAhHQKJIrSk0rLB1fZQoaAZHQHFw4+r2g39oB0vIaAhHQKJIxyrgflp1fZQoaAZHQHEYEbPyCnRoB0u6aAhHQKJI53Gn4wh1fZQoaAZHQHJ3i2+fywxoB0vdaAhHQKJJGrrgOz91fZQoaAZHQHNxGCqZML5oB0vEaAhHQKJJRo24usd1fZQoaAZHQHC9CI1tO21oB0vXaAhHQKJJX3fyf+V1fZQoaAZHQHJuaLGaQV9oB0vRaAhHQKJKFs7+1jR1fZQoaAZHQHHNjc6/7BRoB0vjaAhHQKJKVd/J/5N1fZQoaAZHQHEuYjOcDr9oB0viaAhHQKJKYrTYukF1fZQoaAZHQHIUWEPDpC9oB0voaAhHQKJKf3QD3dt1fZQoaAZHQHBnIwIt16poB0vOaAhHQKJK75YYBNp1fZQoaAZHQHGlo9ovi99oB0vYaAhHQKJLHN1yNn51fZQoaAZHQHFA8FQl8gJoB0vGaAhHQKJLMID5j6N1fZQoaAZHQHAT64c3l0ZoB0vJaAhHQKJLS/Vy3kR1fZQoaAZHQHIu9thuwX9oB0vRaAhHQKJLWdo371t1fZQoaAZHQHAwCnDR+jNoB0vAaAhHQKJLXpcophF1fZQoaAZHQHC/Q2606YFoB0vYaAhHQKJLkFjd56d1fZQoaAZHQG6ApGvwEyNoB0vIaAhHQKJLmkRBeHB1fZQoaAZHQHM1s85jpcJoB0u6aAhHQKJLoclPact1fZQoaAZHQG5IEVWS2YxoB0vKaAhHQKJL+8zQ/ot1fZQoaAZHQHCgKo60Y0loB0vmaAhHQKJMb06HTJB1fZQoaAZHQHCbwte2NNtoB0vTaAhHQKJM8mhM8HR1fZQoaAZHQHMUekcjqwBoB0vHaAhHQKJNLD/EOy51fZQoaAZHQHKMAPVd5Y5oB0vcaAhHQKJNXguRLbp1fZQoaAZHQHQOIcBEKE5oB0u+aAhHQKJNeYrJ8v51fZQoaAZHQHPUL0Bfa6BoB0vqaAhHQKJNhkcS5Ah1fZQoaAZHQHKFMNlRP45oB0u9aAhHQKJNpT+ee4F1fZQoaAZHQHKa8HGCI1toB0vGaAhHQKJN1laKUFB1fZQoaAZHQHD266J66atoB0vIaAhHQKJOBZzxPO91fZQoaAZHQG8DOMl1KXhoB0vLaAhHQKJODHn2ZiN1fZQoaAZHQHIs55eJHiFoB0u+aAhHQKJOG7T2FnJ1fZQoaAZHQHFcb5AQg9xoB0vWaAhHQKJOJJHRTjx1fZQoaAZHQGYBNlI3BHloB03oA2gIR0CiTiugHu7ZdX2UKGgGR0BymrfO2RaHaAdLwmgIR0CiTjdYfW+XdX2UKGgGR0ByuiEqUeMiaAdL1GgIR0CiTlzUiILxdX2UKGgGR0By4B7qptJnaAdL1GgIR0CiTrVIqbz9dX2UKGgGR0BwA7pY9xIbaAdL8WgIR0CiT4HktEofdX2UKGgGR0Byerb48EFGaAdLwWgIR0CiT427Wd3CdX2UKGgGR0BzRFkRSP2gaAdL3WgIR0CiT7LSVnmJdX2UKGgGR0BxcuRs/IKdaAdLxGgIR0CiT9s3IdU9dX2UKGgGR0B0MFmQKa5PaAdLzGgIR0CiUBad1+y7dX2UKGgGR0Bx7e3XqZ+haAdL32gIR0CiUBfsmfGudX2UKGgGR0Bw8No11nuiaAdLymgIR0CiUD4QJ5VwdX2UKGgGR0BxAdNtZV4paAdLvWgIR0CiUFq5TZQIdX2UKGgGR0Bwtfh/Aj6faAdLxmgIR0CiUH1U2kzodX2UKGgGR0Bw0K63AmAtaAdL1WgIR0CiUI7JfYz0dX2UKGgGR0BwRqscQyylaAdLzmgIR0CiUIrfcer/dX2UKGgGR0BxclhYvFm4aAdLzmgIR0CiUNMUZeiSdX2UKGgGR0BxdyiJwbVCaAdL7mgIR0CiUNqMNtqIdX2UKGgGR0BzAgq4H5aeaAdL32gIR0CiUNcDjin6dX2UKGgGR0BwZfe54GD+aAdNHgFoCEdAolDyYXwb2nV9lChoBkdAcpKK28Zk1GgHS9JoCEdAolEuZof0VnV9lChoBkdAbvJQbdadMGgHS8toCEdAolHTpmmLtXV9lChoBkdAcFQcf/3nIWgHS8loCEdAolIUWCVbA3V9lChoBkdAcpM2pyZKF2gHS8ZoCEdAolJAhIOH33V9lChoBkdAcbPQPqcEvGgHS+ZoCEdAolJly3kPtnV9lChoBkdActKznRsuWmgHS79oCEdAolJ4F3Y+S3V9lChoBkdAb+8iiZfD12gHS8hoCEdAolKg2n8893V9lChoBkdAcoo3w1BMSWgHS7doCEdAolLho24usnV9lChoBkdAb5JKWcBltmgHS8FoCEdAolLehmGucXV9lChoBkdAcSr5NXYDkmgHS9ZoCEdAolMMPMB6r3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 467, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}