File size: 1,786 Bytes
3a1b5e9
2210a7a
 
 
 
 
 
 
 
 
 
3a1b5e9
 
2210a7a
 
3a1b5e9
2210a7a
3a1b5e9
2210a7a
 
 
 
 
 
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
3a1b5e9
2210a7a
 
 
 
 
 
 
 
 
 
3a1b5e9
2210a7a
3a1b5e9
2210a7a
 
 
 
 
3a1b5e9
 
2210a7a
3a1b5e9
2210a7a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: finetune-NLLB-600M-on-opus100-Ar2En-without-optimization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune-NLLB-600M-on-opus100-Ar2En-without-optimization

This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2100
- Bleu: 34.6972
- Rouge: 0.6037
- Gen Len: 17.7144

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Rouge  | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
| 1.5487        | 1.0   | 2000 | 1.2118          | 34.2974 | 0.6072 | 17.6144 |
| 1.135         | 2.0   | 4000 | 1.2100          | 34.6972 | 0.6037 | 17.7144 |
| 0.9746        | 3.0   | 6000 | 1.2414          | 34.1024 | 0.5995 | 17.6656 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1