--- base_model: UBC-NLP/AraT5v2-base-1024 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: finetune-t5-base-on-opus100-Ar2En-without-optimization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 config: ar-en split: train[:7000] args: ar-en metrics: - name: Bleu type: bleu value: 10.4288 --- # finetune-t5-base-on-opus100-Ar2En-without-optimization This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 3.0042 - Bleu: 10.4288 - Gen Len: 10.739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 18 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 10.1448 | 1.0 | 210 | 3.9256 | 2.8335 | 9.4988 | | 4.9822 | 2.0 | 420 | 3.5760 | 4.9001 | 10.3329 | | 4.42 | 3.0 | 630 | 3.4037 | 5.6973 | 10.301 | | 4.1414 | 4.0 | 840 | 3.3057 | 6.5224 | 10.5559 | | 3.9451 | 5.0 | 1050 | 3.2169 | 7.409 | 10.7571 | | 3.7972 | 6.0 | 1260 | 3.1759 | 8.1445 | 10.5908 | | 3.6687 | 7.0 | 1470 | 3.1340 | 8.246 | 10.7451 | | 3.5494 | 8.0 | 1680 | 3.1098 | 8.5656 | 10.7616 | | 3.4748 | 9.0 | 1890 | 3.0749 | 9.052 | 10.8798 | | 3.3945 | 10.0 | 2100 | 3.0725 | 9.3223 | 10.6794 | | 3.314 | 11.0 | 2310 | 3.0511 | 9.67 | 10.6871 | | 3.2606 | 12.0 | 2520 | 3.0398 | 9.6105 | 10.6531 | | 3.2314 | 13.0 | 2730 | 3.0211 | 10.0661 | 10.752 | | 3.1557 | 14.0 | 2940 | 3.0188 | 10.0724 | 10.7188 | | 3.1571 | 15.0 | 3150 | 3.0148 | 10.3648 | 10.7596 | | 3.1213 | 16.0 | 3360 | 3.0061 | 10.4008 | 10.7784 | | 3.1111 | 17.0 | 3570 | 3.0077 | 10.4588 | 10.7155 | | 3.0851 | 18.0 | 3780 | 3.0042 | 10.4288 | 10.739 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0