Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
3 |
datasets:
|
4 |
- google/imageinwords
|
5 |
language:
|
@@ -7,4 +9,102 @@ language:
|
|
7 |
library_name: transformers
|
8 |
pipeline_tag: image-to-text
|
9 |
---
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model:
|
4 |
+
- microsoft/Florence-2-large-ft
|
5 |
datasets:
|
6 |
- google/imageinwords
|
7 |
language:
|
|
|
9 |
library_name: transformers
|
10 |
pipeline_tag: image-to-text
|
11 |
---
|
12 |
+
|
13 |
+
# Florence-2-large-ft trained on task MORE_DETAILED_CAPTION with imageinwords
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
### Single Image
|
18 |
+
|
19 |
+
```python
|
20 |
+
from PIL import Image
|
21 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
22 |
+
|
23 |
+
name = "yayayaaa/florence-2-large-ft-moredetailed"
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True).to("cuda").eval()
|
25 |
+
processor = AutoProcessor.from_pretrained(name, trust_remote_code=True)
|
26 |
+
|
27 |
+
prompt = "<MORE_DETAILED_CAPTION>"
|
28 |
+
filename = 'test.jpg'
|
29 |
+
image = Image.open(filename).convert('RGB')
|
30 |
+
|
31 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
32 |
+
|
33 |
+
generated_ids = model.generate(
|
34 |
+
input_ids=inputs["input_ids"],
|
35 |
+
pixel_values=inputs["pixel_values"],
|
36 |
+
max_new_tokens=1024,
|
37 |
+
do_sample=False,
|
38 |
+
|
39 |
+
)
|
40 |
+
print(processor.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
41 |
+
```
|
42 |
+
|
43 |
+
### Batch
|
44 |
+
|
45 |
+
Install accelerate for device_map
|
46 |
+
|
47 |
+
Can do batch_size=28 for 24GB VRAM
|
48 |
+
|
49 |
+
```python
|
50 |
+
import sys
|
51 |
+
import torch
|
52 |
+
from tqdm import tqdm
|
53 |
+
from pathlib import Path
|
54 |
+
from PIL import Image
|
55 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
56 |
+
from torch.utils.data import Dataset, DataLoader
|
57 |
+
|
58 |
+
task = "<MORE_DETAILED_CAPTION>"
|
59 |
+
name="yayayaaa/florence-2-large-ft-moredetailed"
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto")
|
61 |
+
processor = AutoProcessor.from_pretrained(name, trust_remote_code=True, device_map="auto")
|
62 |
+
|
63 |
+
#model.language_model.generate = torch.compile(model.language_model.generate)
|
64 |
+
|
65 |
+
# BATCH SIZE
|
66 |
+
batch_size=28
|
67 |
+
|
68 |
+
directory = Path(sys.argv[1])
|
69 |
+
patterns = ['**/*.jpg', '**/*.jpeg', '**/*.png']
|
70 |
+
patterns += [p.upper() for p in patterns]
|
71 |
+
filenames = [str(fn) for pattern in patterns for fn in directory.glob(pattern)]
|
72 |
+
|
73 |
+
class Data(Dataset):
|
74 |
+
def __init__(self, data):
|
75 |
+
self.name="Data"
|
76 |
+
self.data=data
|
77 |
+
|
78 |
+
def __len__(self):
|
79 |
+
return len(self.data)
|
80 |
+
|
81 |
+
def __getitem__(self, idx):
|
82 |
+
return self.data[idx]
|
83 |
+
|
84 |
+
data = DataLoader(Data(filenames), batch_size=batch_size, num_workers=0, shuffle=False)
|
85 |
+
|
86 |
+
@torch.inference_mode()
|
87 |
+
def process_images(images):
|
88 |
+
inputs = processor(text=[task]*len(images), images=images, return_tensors="pt").to("cuda")
|
89 |
+
|
90 |
+
generated_ids = model.generate(
|
91 |
+
input_ids=inputs["input_ids"],
|
92 |
+
pixel_values=inputs["pixel_values"],
|
93 |
+
max_new_tokens=1024,
|
94 |
+
do_sample=False,
|
95 |
+
)
|
96 |
+
|
97 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
98 |
+
return generated_texts
|
99 |
+
|
100 |
+
for batch in tqdm(data):
|
101 |
+
images = [Image.open(filename).convert("RGB") for filename in batch]
|
102 |
+
|
103 |
+
generated_texts = process_images(images)
|
104 |
+
|
105 |
+
for i, caption in enumerate(generated_texts):
|
106 |
+
filename = Path(batch[i])
|
107 |
+
#print(caption)
|
108 |
+
with open(filename.with_suffix(".txt"), "w") as text_file:
|
109 |
+
text_file.write(caption)
|
110 |
+
```
|