--- tags: - BERT - Text Classification - relation language: Arabic license: mit datasets: - ACE2005 --- # Arabic Relation Extraction Model - [Github repo](https://github.com/edchengg/GigaBERT) - Relation Extraction model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English). - ACE2005 Training data: Arabic - [Relation tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/arabic-relations-guidelines-v6.5.pdf) including: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact, Gen-Affiliation ## Hyperparameters - learning_rate=2e-5 - num_train_epochs=10 - weight_decay=0.01 ## ACE2005 Evaluation results (F1) | Language | Arabic | |:----:|:-----------:| | | 89.4 | ## How to use ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AuotoModelForSequenceClassification >>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) >>> re_model = AutoModelForSequenceClassification.from_pretrained("ychenNLP/arabic-relation-extraction") >>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction") >>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer) def process_ner_output(entity_mention, inputs): re_input = [] for idx1 in range(len(entity_mention) - 1): for idx2 in range(idx1 + 1, len(entity_mention)): ent_1 = entity_mention[idx1] ent_2 = entity_mention[idx2] ent_1_type = ent_1['entity_group'] ent_2_type = ent_2['entity_group'] ent_1_s = ent_1['start'] ent_1_e = ent_1['end'] ent_2_s = ent_2['start'] ent_2_e = ent_2['end'] new_re_input = "" for c_idx, c in enumerate(inputs): if c_idx == ent_1_s: new_re_input += "<{}>".format(ent_1_type) elif c_idx == ent_1_e: new_re_input += "".format(ent_1_type) elif c_idx == ent_2_s: new_re_input += "<{}>".format(ent_2_type) elif c_idx == ent_2_e: new_re_input += "".format(ent_2_type) new_re_input += c re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs}) return re_input def post_process_re_output(re_output, re_input, ner_output): final_output = [] for idx, out in enumerate(re_output): if out["label"] != 'O': tmp = re_input[idx] tmp['relation_type'] = out tmp.pop('re_input', None) final_output.append(tmp) template = {"input": re_input["input"], "entity": ner_output, "relation": final_output} return template >>> input = "Hugging face is a French company in New york." >>> output = ner_pip(input) # inference NER tags >>> re_input = process_ner_output(output, input) # prepare a pair of entity and predict relation type >>> re_output = [] >>> for idx in range(len(re_input)): >>> tmp_re_output = re_pip(re_input[idx]["re_input"]) # for each pair of entity, predict relation >>> re_output.append(tmp_re_output) >>> re_ner_output = post_process_re_output(re_output) # post process NER and relation predictions >>> print("Sentence: ",re_ner_output["input"]) >>> print("Entity: ", re_ner_output["entity"]) >>> print("Relation: ", re_ner_output["relation"]) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ```