yehiawp4 commited on
Commit
b9313e0
1 Parent(s): 007b225

Model save

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: MCG-NJU/videomae-base-finetuned-kinetics
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: videomae-base-finetuned-kinetics-finetuned-caer-subset
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # videomae-base-finetuned-kinetics-finetuned-caer-subset
17
+
18
+ This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.9172
21
+ - Accuracy: 0.1691
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 350
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 2.0268 | 0.56 | 196 | 2.0381 | 0.1091 |
54
+ | 1.8411 | 1.44 | 350 | 1.8626 | 0.1455 |
55
+
56
+
57
+ ### Framework versions
58
+
59
+ - Transformers 4.38.2
60
+ - Pytorch 2.1.0
61
+ - Datasets 2.18.0
62
+ - Tokenizers 0.15.2