yehiawp4 commited on
Commit
7910d60
1 Parent(s): 8d52bc5

Model save

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: google/vivit-b-16x2-kinetics400
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vivit-b-16x2-kinetics400-CAER-SAMPLE
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vivit-b-16x2-kinetics400-CAER-SAMPLE
17
+
18
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.9485
21
+ - Accuracy: 0.2427
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 2100
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 2.4781 | 0.09 | 196 | 1.8166 | 0.2439 |
54
+ | 2.0142 | 1.09 | 392 | 2.2946 | 0.1951 |
55
+ | 1.2947 | 2.09 | 588 | 1.6998 | 0.3659 |
56
+ | 0.8486 | 3.09 | 784 | 2.0369 | 0.2195 |
57
+ | 0.2636 | 4.09 | 980 | 1.9748 | 0.3171 |
58
+ | 0.2805 | 5.09 | 1176 | 2.3563 | 0.3659 |
59
+ | 0.0923 | 6.09 | 1372 | 2.3754 | 0.3659 |
60
+ | 0.1543 | 7.09 | 1568 | 2.7737 | 0.3171 |
61
+ | 0.0387 | 8.09 | 1764 | 2.6676 | 0.3659 |
62
+ | 0.0101 | 9.09 | 1960 | 2.7895 | 0.3415 |
63
+ | 0.0662 | 10.07 | 2100 | 2.7728 | 0.3415 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.38.2
69
+ - Pytorch 2.1.0
70
+ - Datasets 2.18.0
71
+ - Tokenizers 0.15.2