Model save
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: google/vivit-b-16x2-kinetics400
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vivit-b-16x2-kinetics400-CAER-SAMPLE
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vivit-b-16x2-kinetics400-CAER-SAMPLE
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.9485
|
21 |
+
- Accuracy: 0.2427
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 2100
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 2.4781 | 0.09 | 196 | 1.8166 | 0.2439 |
|
54 |
+
| 2.0142 | 1.09 | 392 | 2.2946 | 0.1951 |
|
55 |
+
| 1.2947 | 2.09 | 588 | 1.6998 | 0.3659 |
|
56 |
+
| 0.8486 | 3.09 | 784 | 2.0369 | 0.2195 |
|
57 |
+
| 0.2636 | 4.09 | 980 | 1.9748 | 0.3171 |
|
58 |
+
| 0.2805 | 5.09 | 1176 | 2.3563 | 0.3659 |
|
59 |
+
| 0.0923 | 6.09 | 1372 | 2.3754 | 0.3659 |
|
60 |
+
| 0.1543 | 7.09 | 1568 | 2.7737 | 0.3171 |
|
61 |
+
| 0.0387 | 8.09 | 1764 | 2.6676 | 0.3659 |
|
62 |
+
| 0.0101 | 9.09 | 1960 | 2.7895 | 0.3415 |
|
63 |
+
| 0.0662 | 10.07 | 2100 | 2.7728 | 0.3415 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.38.2
|
69 |
+
- Pytorch 2.1.0
|
70 |
+
- Datasets 2.18.0
|
71 |
+
- Tokenizers 0.15.2
|