--- base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align library_name: transformers metrics: - accuracy - precision - recall - f1 tags: - generated_from_trainer model-index: - name: dfm1 results: [] --- # dfm1 This model is a fine-tuned version of [KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align](https://huggingface.co/KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.8868 - Precision: 0.8861 - Recall: 0.8868 - F1: 0.8855 - Loss: 0.5432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:| | No log | 0.9412 | 8 | 0.7844 | 0.7464 | 0.7844 | 0.7612 | 0.7436 | | No log | 2.0 | 17 | 0.8999 | 0.8922 | 0.8999 | 0.8914 | 0.3252 | | No log | 2.9412 | 25 | 0.9214 | 0.9226 | 0.9214 | 0.9121 | 0.3213 | | No log | 4.0 | 34 | 0.9164 | 0.9235 | 0.9164 | 0.9176 | 0.3572 | | No log | 4.9412 | 42 | 0.8880 | 0.8875 | 0.8880 | 0.8857 | 0.3576 | | No log | 6.0 | 51 | 0.8907 | 0.8894 | 0.8907 | 0.8898 | 0.3993 | | No log | 6.9412 | 59 | 0.8822 | 0.8822 | 0.8822 | 0.8806 | 0.4444 | | No log | 8.0 | 68 | 0.8876 | 0.8867 | 0.8876 | 0.8865 | 0.4480 | | No log | 8.9412 | 76 | 0.8987 | 0.8978 | 0.8987 | 0.8979 | 0.4688 | | No log | 10.0 | 85 | 0.8984 | 0.8972 | 0.8984 | 0.8975 | 0.4845 | | No log | 10.9412 | 93 | 0.8895 | 0.8887 | 0.8895 | 0.8884 | 0.5172 | | No log | 12.0 | 102 | 0.8891 | 0.8882 | 0.8891 | 0.8881 | 0.5349 | | No log | 12.9412 | 110 | 0.8907 | 0.8897 | 0.8907 | 0.8896 | 0.5343 | | No log | 14.0 | 119 | 0.8895 | 0.8886 | 0.8895 | 0.8884 | 0.5374 | | No log | 14.9412 | 127 | 0.8868 | 0.8861 | 0.8868 | 0.8855 | 0.5317 | | No log | 16.0 | 136 | 0.8853 | 0.8847 | 0.8853 | 0.8839 | 0.5383 | | No log | 16.9412 | 144 | 0.8853 | 0.8847 | 0.8853 | 0.8839 | 0.5402 | | No log | 18.0 | 153 | 0.8865 | 0.8858 | 0.8865 | 0.8851 | 0.5429 | | No log | 18.8235 | 160 | 0.8868 | 0.8861 | 0.8868 | 0.8855 | 0.5432 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Tokenizers 0.19.1