--- base_model: NbAiLab/nb-bert-base library_name: transformers license: cc-by-4.0 metrics: - accuracy - precision - recall - f1 tags: - generated_from_trainer model-index: - name: nbbert results: [] --- # nbbert This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9305 - Precision: 0.9342 - Recall: 0.9305 - F1: 0.9305 - Loss: 0.4443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:| | No log | 0.9412 | 8 | 0.4361 | 0.6823 | 0.4361 | 0.3171 | 0.8924 | | No log | 2.0 | 17 | 0.8851 | 0.8758 | 0.8851 | 0.8748 | 0.4652 | | No log | 2.9412 | 25 | 0.8281 | 0.8333 | 0.8281 | 0.8204 | 0.5819 | | No log | 4.0 | 34 | 0.8759 | 0.8922 | 0.8759 | 0.8749 | 0.4312 | | No log | 4.9412 | 42 | 0.8550 | 0.8762 | 0.8550 | 0.8548 | 0.5312 | | No log | 6.0 | 51 | 0.8944 | 0.8940 | 0.8944 | 0.8941 | 0.3318 | | No log | 6.9412 | 59 | 0.9209 | 0.9255 | 0.9209 | 0.9210 | 0.3824 | | No log | 8.0 | 68 | 0.9213 | 0.9282 | 0.9213 | 0.9219 | 0.4385 | | No log | 8.9412 | 76 | 0.9205 | 0.9226 | 0.9205 | 0.9205 | 0.3830 | | No log | 10.0 | 85 | 0.9249 | 0.9309 | 0.9249 | 0.9252 | 0.4137 | | No log | 10.9412 | 93 | 0.9269 | 0.9310 | 0.9269 | 0.9270 | 0.4014 | | No log | 12.0 | 102 | 0.9293 | 0.9321 | 0.9293 | 0.9293 | 0.3923 | | No log | 12.9412 | 110 | 0.9277 | 0.9320 | 0.9277 | 0.9278 | 0.4565 | | No log | 14.0 | 119 | 0.9305 | 0.9342 | 0.9305 | 0.9305 | 0.4166 | | No log | 14.9412 | 127 | 0.9281 | 0.9325 | 0.9281 | 0.9282 | 0.4512 | | No log | 16.0 | 136 | 0.9297 | 0.9336 | 0.9297 | 0.9298 | 0.4465 | | No log | 16.9412 | 144 | 0.9273 | 0.9318 | 0.9273 | 0.9274 | 0.4624 | | No log | 18.0 | 153 | 0.9277 | 0.9321 | 0.9277 | 0.9278 | 0.4593 | | No log | 18.8235 | 160 | 0.9305 | 0.9342 | 0.9305 | 0.9305 | 0.4443 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1