File size: 3,686 Bytes
446eed8
 
 
 
 
 
 
 
 
 
 
 
 
c382594
 
 
446eed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c382594
 
 
 
 
446eed8
 
 
c382594
446eed8
 
 
c382594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446eed8
c382594
446eed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c382594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: democracy-sentiment-analysis-turkish-roberta
  results: []
license: mit
language:
- tr
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# democracy-sentiment-analysis-turkish-roberta

This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4469
- Accuracy: 0.8184
- F1: 0.8186
- Precision: 0.8224
- Recall: 0.8184

## Model description

This model is fine-tuned from the base model cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual for sentiment analysis in Turkish, specifically focusing on democracy-related text. The model classifies texts into three sentiment categories:

Positive
Neutral
Negative

## Intended uses & limitations

This model is well-suited for analyzing sentiments in Turkish texts that discuss democracy, governance, and related political discourse.

## Training and evaluation data

The training dataset consists of 30,000 rows gathered from various sources, including: Kaggle, Hugging Face, Ekşi Sözlük, and synthetic data generated using state-of-the-art LLMs.
The dataset is multilingual in origin, with texts in English, Russian, and Turkish. All non-Turkish texts were translated into Turkish. The data represents a broad spectrum of democratic discourse from 30 different sources.

## How to Use

To use this model for sentiment analysis, you can leverage the Hugging Face `pipeline` for text classification as shown below:

```python
from transformers import pipeline

# Load the model from Hugging Face
sentiment_model = pipeline(model="yeniguno/democracy-sentiment-analysis-turkish-roberta", task='text-classification')

# Example text input
response = sentiment_model("En iyisi devletin tüm gücünü tek bir lidere verelim")

# Print the result
print(response)
# [{'label': 'negative', 'score': 0.9617443084716797}]

# Example text input
response = sentiment_model("Birçok farklı sesin çıkması zaman alıcı ve karmaşık görünebilir, ancak demokrasinin getirdiği özgürlük ve çeşitlilik, toplumun gerçek gücüdür.")

# Print the result
print(response)
# [{'label': 'positive', 'score': 0.958978533744812}]

# Example text input
response = sentiment_model("Bugün hava yağmurlu.")

# Print the result
print(response)
# [{'label': 'neutral', 'score': 0.9915837049484253}]

```
## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.7236        | 1.0   | 802  | 0.4797          | 0.8039   | 0.8031 | 0.8037    | 0.8039 |
| 0.424         | 2.0   | 1604 | 0.4469          | 0.8184   | 0.8186 | 0.8224    | 0.8184 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1