--- license: cc-by-4.0 base_model: paust/pko-t5-large tags: - generated_from_trainer model-index: - name: OndeviceAI-T5-v1 results: [] --- # OndeviceAI-T5-v1 This model is a fine-tuned version of [paust/pko-t5-large](https://huggingface.co/paust/pko-t5-large) on the None dataset. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained("yeye776/OndeviceAI-T5-v1") model = AutoModelForSeq2SeqLM.from_pretrained("yeye776/OndeviceAI-T5-v1") prompt = "분류 및 인식해줘 :" def prepare_input(question: str): inputs = f"{prompt} {question}" input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids return input_ids def inference(question: str) -> str: input_data = prepare_input(question=question) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=1024) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result inference("안방 조명 켜줘") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0