#!/bin/bash export HF_PROJECT="gpt2-medium-dutch-nedd-2" # Variables for training the tokenizer and creating the config export VOCAB_SIZE="50257" export DATASET="${HOME}/data/nedd_wiki_news/nedd_wiki_news.py" # Name of the dataset in the Huggingface Hub export DATASET_CONFIG="ddwn500_nl" # Config of the dataset in the Huggingface Hub export DATASET_SPLIT="train" # Split to use for training tokenizer and model export TEXT_FIELD="text" # Field containing the text to be used for training export CONFIG_TYPE="gpt2-medium" # Config that our model will use export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model, e.g. here inside the mount python run_clm_flax.py \ --output_dir="${MODEL_PATH}" \ --model_type="gpt2" \ --config_name="${MODEL_PATH}" \ --tokenizer_name="${MODEL_PATH}" \ --preprocessing_num_workers="96" \ --do_train --do_eval \ --dataset_name="${DATASET}" \ --dataset_config_name="${DATASET_CONFIG}" \ --block_size="512" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --learning_rate="0.0024" --warmup_steps="5000" \ --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \ --overwrite_output_dir \ --num_train_epochs="1" \ --logging_steps="500" \ --save_steps="40000" \ --eval_steps="2500" # \ # --push_to_hub