ppo-LunarLander-v2 / config.json
yhna's picture
Upload PPO LunarLander-v2 trained agent
f7c05d8
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4dabce2cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4dabce2d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4dabce2dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4dabce2e60>", "_build": "<function ActorCriticPolicy._build at 0x7f4dabce2ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4dabce2f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4dabce3010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4dabce30a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4dabce3130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4dabce31c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4dabce3250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4dabce32e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4dabce9480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687743482502909271, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACar671krG4/EpIpPbGs9L6I4mi+rkeoPQAAAAAAAAAAgGZVPRxzEj94J4u8JG/Evhx8Az0yfm+9AAAAAAAAAADAJPK9hSXUu8Z/pj3PObS9FurxvEW6lL4AAIA/AACAPzPAlz31ulI+YKncvhfkl77yWK691koovgAAAAAAAAAAmo9MvEKyZD6YxaK9r/KDvqIOdbxWhl29AAAAAAAAAAAzYjc9SHeXus3mkbNVB6SsF8Q3ukY4szMAAIA/AACAP83qb7y3bno+CfeDPODLn75Kfk48KoRnvQAAAAAAAAAAZv2hPMMFtD/dZYA+zunxvaqTETzCHVc7AAAAAAAAAADmufE9moZNPsNJh76Am6q+JHupuxKJgD0AAAAAAAAAADMs3zzp+z+8Mt6GuiVkKjyYyJ+9bEMRPQAAgD8AAIA/M/lYPv/rIT/TvKa8Q7/iviTqUz7MD0I9AAAAAAAAAADQpYg+byk1P2Xd3L1c6ry+hnAgPmX2g70AAAAAAAAAAE1IcL0cjZE/EFE5vXHz+74h6i2+VW4pPQAAAAAAAAAAAFoVPMv+uj9+fjY+lV/IPpsgZLtiwrM7AAAAAAAAAAAAcEw8q+uFP4fGGDzlYAi/AAlnvd2yHrwAAAAAAAAAAABAUL3h+o+69uauvCxg6jTYDSE7yxJdtAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9gH8KohpyMAWyUS+uMAXSUR0CVGZqM3qA0dX2UKGgGR0Bw9GMR6F/QaAdL8WgIR0CVGj9NN8E3dX2UKGgGR0ByhWv3ai9JaAdNDgFoCEdAlRpqsySFG3V9lChoBkdAcAYNIK+i8GgHTQsBaAhHQJUcIexOclR1fZQoaAZHQHNLqfe1rqNoB00PAWgIR0CVHIs/IKc/dX2UKGgGR0BxMnHyVfNSaAdNBAFoCEdAlRzYs7MgU3V9lChoBkdAcpwfTkQwsWgHTQUBaAhHQJUdWF9KEnN1fZQoaAZHQHJ+echC+lFoB00FAWgIR0CVHbPOIInjdX2UKGgGR0Bv5ahi9ZieaAdNFgFoCEdAlR4e5nUUf3V9lChoBkdAccb5e7cwg2gHS/poCEdAlR5AvYe1bHV9lChoBkdAcPfG5+Ytx2gHTS8BaAhHQJUec0Mw1zh1fZQoaAZHQG+b0yHmA9VoB0v0aAhHQJUe80UGmk51fZQoaAZHQEe9gR9PUKBoB0u3aAhHQJUe73qRlpZ1fZQoaAZHQHMpCgPEsJ9oB0v7aAhHQJUfwiRnvlV1fZQoaAZHQHFLdmUW2w5oB0v7aAhHQJUhEjyFwkx1fZQoaAZHQHQtCKekHlhoB00QAmgIR0CVIS+7Dl5odX2UKGgGR0BxfwFY+0PZaAdL72gIR0CVIYrJbMX8dX2UKGgGR0Bxr5UzbeuWaAdN3gFoCEdAlSGg3cYZVHV9lChoBkdAchuU4aP0ZmgHTRcBaAhHQJUiZ6kZaV51fZQoaAZHQHNq+vyLAHpoB0viaAhHQJUjWHuZ1FJ1fZQoaAZHQHEFgb+98JFoB0viaAhHQJUj2C/XXiB1fZQoaAZHQHEg5i/fwZxoB00IAWgIR0CVI9jPv8ZUdX2UKGgGR0Bwyv+CK77LaAdL/mgIR0CVI+tK7I1cdX2UKGgGR0Bx4307KaG6aAdL2mgIR0CVJI6ZYxL1dX2UKGgGR0BwquvyLAHnaAdNAwFoCEdAlST8IVuaW3V9lChoBkdAcDp5/smfG2gHS+RoCEdAlSVJYLb5/XV9lChoBkdAcgmJyQxN7GgHTRQBaAhHQJUlzKJVKf51fZQoaAZHQHFF2wqy4WloB00SAWgIR0CVJeCNCJGfdX2UKGgGR0BuiviR4hUzaAdL8mgIR0CVJmYYBNmEdX2UKGgGR0Bv3sZ9/jKgaAdNFAFoCEdAlSaR3A2ycHV9lChoBkdAcXzsVLzwt2gHS9RoCEdAlSda3iJfpnV9lChoBkdAbRZ1/Ue+22gHS+xoCEdAlSd7SiM5wXV9lChoBkdAcrLS3b212WgHS/toCEdAlTd5JkGzKXV9lChoBkdAcJGGSIP9UGgHS/JoCEdAlTeZvYODrnV9lChoBkdAUdtNN8E3bWgHS8FoCEdAlThz7655JXV9lChoBkdAcPWOWBz3iGgHS/5oCEdAlTjeb3Gn43V9lChoBkdAb5zQC0WuYGgHS+JoCEdAlTm2S+xnnXV9lChoBkdAcUt2kBS1mmgHTQIBaAhHQJU6NFSbYsd1fZQoaAZHQHJxIyTINmVoB0vgaAhHQJU6j9BKL891fZQoaAZHQHMIc4YJmd1oB0vcaAhHQJU7cyJsO5J1fZQoaAZHQHMHUelsP8RoB00eAWgIR0CVO9u+RHPNdX2UKGgGR0BywY+PikwfaAdL3GgIR0CVPEaEzwc6dX2UKGgGR0By4SKxcE/0aAdL72gIR0CVPOYcNpdsdX2UKGgGR0ByHaEOAiFCaAdL2GgIR0CVPSQ3gk1NdX2UKGgGR0BxvsEt/WlNaAdNGgFoCEdAlT1XXNC7b3V9lChoBkdAci9GpMpPRGgHS/loCEdAlT4Nb5dnkHV9lChoBkdAc/DE3sHB12gHS+NoCEdAlT7DMaCL/HV9lChoBkdAcWijT8YQ8WgHS+1oCEdAlT74+r2g4HV9lChoBkdAcBgexOclPmgHS9loCEdAlUBpUcXFcnV9lChoBkdActyCE6DGtWgHTQ8BaAhHQJVBRvVEuxt1fZQoaAZHQHEMX8n/kvNoB00UAWgIR0CVQVNIsiB5dX2UKGgGR0BvfD8cdYGMaAdL5GgIR0CVQWY0EX+EdX2UKGgGR0Bw+njaPCEYaAdL42gIR0CVQyku6ErYdX2UKGgGR0Bz5sFA3T/iaAdL82gIR0CVQ281Gb1AdX2UKGgGR0BvfGNFSbYsaAdL3WgIR0CVQ/c/MW43dX2UKGgGR0BxwupqASWaaAdL5mgIR0CVRMhdt2s8dX2UKGgGR0BuQJhH9WIXaAdL6WgIR0CVRWI9TxXodX2UKGgGR0BUkg/PgNwzaAdLs2gIR0CVRkFEiMYNdX2UKGgGR0BxVv+wTufFaAdL+WgIR0CVRtEg4ffXdX2UKGgGR0BzNvIU8FINaAdNXQFoCEdAlUd8uWa+e3V9lChoBkdAbeBLTQVsUWgHS+BoCEdAlUgJJGvwE3V9lChoBkdAcGzhg3Lmp2gHTQ8BaAhHQJVIF9oexOd1fZQoaAZHQHEJHLq2SdRoB00NAWgIR0CVSEHo5ggHdX2UKGgGR0ByJz8YQ8OkaAdLxmgIR0CVSMS5iExqdX2UKGgGR0BzKs7gbZOBaAdNCAFoCEdAlUja4H5aeXV9lChoBkdAcYmKsuFpPGgHS/JoCEdAlUttDx9XtHV9lChoBkdAcX9lZHNHH2gHS/BoCEdAlUt56D5CW3V9lChoBkdAcv+X2dupCWgHS+5oCEdAlU1E+s5n13V9lChoBkdAcgWAood+5WgHS+JoCEdAlU1FC9h7V3V9lChoBkdAcGP6yB06o2gHTQABaAhHQJVNmw9q1w51fZQoaAZHQHEh8sDnvDxoB00/AWgIR0CVThn3+MqCdX2UKGgGR0BwrhGEwnIAaAdL52gIR0CVTlRigCfZdX2UKGgGR0BxfXOlfqoqaAdNCAFoCEdAlU7OLFXJYHV9lChoBkdAc8ZoWYWtVGgHS+ZoCEdAlU+aOgg5inV9lChoBkdAb92hnJ1aGGgHS+RoCEdAlU/1HnU2DXV9lChoBkdAb0KG8mKIi2gHS+xoCEdAlVAmsA/9pHV9lChoBkdAbydI6r/822gHS/BoCEdAlVBtgSeyzHV9lChoBkdAc2Orbg0j1WgHS+RoCEdAlVB13Qla83V9lChoBkdAcOtYSQHRkWgHTRsBaAhHQJVQssTWXkZ1fZQoaAZHQHBMb8iwB5poB00qAWgIR0CVUMevIOpbdX2UKGgGR0A8+kBjnV5KaAdLgmgIR0CVUNy4Wk8BdX2UKGgGR0BwgIzoEB8yaAdNAAFoCEdAlVEu8CgbqHV9lChoBkdAcj3zk6tDD2gHS/RoCEdAlVKQrxy4nXV9lChoBkdAcYUqYZ2pymgHS/xoCEdAlVLKYqoZRHV9lChoBkdAbq6zMzMzM2gHS9toCEdAlVN5/5LytnV9lChoBkdAb9lMA3kxRGgHS+9oCEdAlVOsU/OdG3V9lChoBkdAcHM0mtyPuGgHS+hoCEdAlVQ+Eug6EXV9lChoBkdAcxoGOdXkpGgHS/JoCEdAlVS9RFZxJnV9lChoBkdAcQm/W1+iJ2gHS+FoCEdAlVWJg1FYuHV9lChoBkdAcDdVopQUH2gHS95oCEdAlVX2kvboKXV9lChoBkdAczot4A0bcWgHTQ0BaAhHQJVV/uSfUWl1fZQoaAZHQHAtifDk2gpoB0vXaAhHQJVWBDb8FZB1fZQoaAZHQHL7SEL6UJRoB0veaAhHQJVWmmYSg5B1fZQoaAZHQHIIbUPQOWloB0vdaAhHQJVW7paA4GV1fZQoaAZHQHMv+qzZ6D5oB00RAWgIR0CVVw5lOGj9dX2UKGgGR0Bw8X1TR6WxaAdNDQFoCEdAlVe/XXiBG3V9lChoBkdAb5LngYP5HmgHTRkBaAhHQJVX+Oo5xR51fZQoaAZHQHKC0pAlfJFoB0vZaAhHQJVYae/YapB1fZQoaAZHQHKDNovi97FoB0vOaAhHQJVZEmzByjp1fZQoaAZHQG7w04R28qZoB0v8aAhHQJVZI8cMmWt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}