yishan-wang commited on
Commit
3f5ee76
1 Parent(s): e9e1669

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2846 -0
README.md ADDED
@@ -0,0 +1,2846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-s
3
+ license: apache-2.0
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - feature-extraction
8
+ - sentence-similarity
9
+ - mteb
10
+ - arctic
11
+ - snowflake-arctic-embed
12
+ - transformers.js
13
+ - llama-cpp
14
+ - gguf-my-repo
15
+ model-index:
16
+ - name: snowflake-snowflake-arctic-embed-s
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ name: MTEB AmazonCounterfactualClassification (en)
22
+ type: mteb/amazon_counterfactual
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 71.17910447761193
29
+ - type: ap
30
+ value: 33.15833652904991
31
+ - type: f1
32
+ value: 64.86214791591543
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ name: MTEB AmazonPolarityClassification
37
+ type: mteb/amazon_polarity
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 78.750325
44
+ - type: ap
45
+ value: 72.83242788470943
46
+ - type: f1
47
+ value: 78.63968044029453
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ name: MTEB AmazonReviewsClassification (en)
52
+ type: mteb/amazon_reviews_multi
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 38.264
59
+ - type: f1
60
+ value: 37.140269688532825
61
+ - task:
62
+ type: Retrieval
63
+ dataset:
64
+ name: MTEB ArguAna
65
+ type: mteb/arguana
66
+ config: default
67
+ split: test
68
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
69
+ metrics:
70
+ - type: map_at_1
71
+ value: 32.646
72
+ - type: map_at_10
73
+ value: 48.372
74
+ - type: map_at_100
75
+ value: 49.207
76
+ - type: map_at_1000
77
+ value: 49.214
78
+ - type: map_at_3
79
+ value: 43.611
80
+ - type: map_at_5
81
+ value: 46.601
82
+ - type: mrr_at_1
83
+ value: 33.144
84
+ - type: mrr_at_10
85
+ value: 48.557
86
+ - type: mrr_at_100
87
+ value: 49.385
88
+ - type: mrr_at_1000
89
+ value: 49.392
90
+ - type: mrr_at_3
91
+ value: 43.777
92
+ - type: mrr_at_5
93
+ value: 46.792
94
+ - type: ndcg_at_1
95
+ value: 32.646
96
+ - type: ndcg_at_10
97
+ value: 56.874
98
+ - type: ndcg_at_100
99
+ value: 60.307
100
+ - type: ndcg_at_1000
101
+ value: 60.465999999999994
102
+ - type: ndcg_at_3
103
+ value: 47.339999999999996
104
+ - type: ndcg_at_5
105
+ value: 52.685
106
+ - type: precision_at_1
107
+ value: 32.646
108
+ - type: precision_at_10
109
+ value: 8.378
110
+ - type: precision_at_100
111
+ value: 0.984
112
+ - type: precision_at_1000
113
+ value: 0.1
114
+ - type: precision_at_3
115
+ value: 19.393
116
+ - type: precision_at_5
117
+ value: 14.210999999999999
118
+ - type: recall_at_1
119
+ value: 32.646
120
+ - type: recall_at_10
121
+ value: 83.784
122
+ - type: recall_at_100
123
+ value: 98.43499999999999
124
+ - type: recall_at_1000
125
+ value: 99.644
126
+ - type: recall_at_3
127
+ value: 58.179
128
+ - type: recall_at_5
129
+ value: 71.053
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ name: MTEB ArxivClusteringP2P
134
+ type: mteb/arxiv-clustering-p2p
135
+ config: default
136
+ split: test
137
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
138
+ metrics:
139
+ - type: v_measure
140
+ value: 44.94353025039141
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ name: MTEB ArxivClusteringS2S
145
+ type: mteb/arxiv-clustering-s2s
146
+ config: default
147
+ split: test
148
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
149
+ metrics:
150
+ - type: v_measure
151
+ value: 35.870836103029156
152
+ - task:
153
+ type: Reranking
154
+ dataset:
155
+ name: MTEB AskUbuntuDupQuestions
156
+ type: mteb/askubuntudupquestions-reranking
157
+ config: default
158
+ split: test
159
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
160
+ metrics:
161
+ - type: map
162
+ value: 61.149290266979236
163
+ - type: mrr
164
+ value: 73.8448093919008
165
+ - task:
166
+ type: STS
167
+ dataset:
168
+ name: MTEB BIOSSES
169
+ type: mteb/biosses-sts
170
+ config: default
171
+ split: test
172
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
173
+ metrics:
174
+ - type: cos_sim_pearson
175
+ value: 87.055571064151
176
+ - type: cos_sim_spearman
177
+ value: 86.2652186235749
178
+ - type: euclidean_pearson
179
+ value: 85.82039272282503
180
+ - type: euclidean_spearman
181
+ value: 86.2652186235749
182
+ - type: manhattan_pearson
183
+ value: 85.95825392094812
184
+ - type: manhattan_spearman
185
+ value: 86.6742640885316
186
+ - task:
187
+ type: Classification
188
+ dataset:
189
+ name: MTEB Banking77Classification
190
+ type: mteb/banking77
191
+ config: default
192
+ split: test
193
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
194
+ metrics:
195
+ - type: accuracy
196
+ value: 79.11688311688312
197
+ - type: f1
198
+ value: 78.28328901613885
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ name: MTEB BigPatentClustering
203
+ type: jinaai/big-patent-clustering
204
+ config: default
205
+ split: test
206
+ revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
207
+ metrics:
208
+ - type: v_measure
209
+ value: 19.147523589859325
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ name: MTEB BiorxivClusteringP2P
214
+ type: mteb/biorxiv-clustering-p2p
215
+ config: default
216
+ split: test
217
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
218
+ metrics:
219
+ - type: v_measure
220
+ value: 35.68369864124274
221
+ - task:
222
+ type: Clustering
223
+ dataset:
224
+ name: MTEB BiorxivClusteringS2S
225
+ type: mteb/biorxiv-clustering-s2s
226
+ config: default
227
+ split: test
228
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
229
+ metrics:
230
+ - type: v_measure
231
+ value: 30.474958792950872
232
+ - task:
233
+ type: Retrieval
234
+ dataset:
235
+ name: MTEB CQADupstackAndroidRetrieval
236
+ type: mteb/cqadupstack-android
237
+ config: default
238
+ split: test
239
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
240
+ metrics:
241
+ - type: map_at_1
242
+ value: 33.183
243
+ - type: map_at_10
244
+ value: 43.989
245
+ - type: map_at_100
246
+ value: 45.389
247
+ - type: map_at_1000
248
+ value: 45.517
249
+ - type: map_at_3
250
+ value: 40.275
251
+ - type: map_at_5
252
+ value: 42.306
253
+ - type: mrr_at_1
254
+ value: 40.486
255
+ - type: mrr_at_10
256
+ value: 49.62
257
+ - type: mrr_at_100
258
+ value: 50.351
259
+ - type: mrr_at_1000
260
+ value: 50.393
261
+ - type: mrr_at_3
262
+ value: 46.805
263
+ - type: mrr_at_5
264
+ value: 48.429
265
+ - type: ndcg_at_1
266
+ value: 40.486
267
+ - type: ndcg_at_10
268
+ value: 50.249
269
+ - type: ndcg_at_100
270
+ value: 55.206
271
+ - type: ndcg_at_1000
272
+ value: 57.145
273
+ - type: ndcg_at_3
274
+ value: 44.852
275
+ - type: ndcg_at_5
276
+ value: 47.355000000000004
277
+ - type: precision_at_1
278
+ value: 40.486
279
+ - type: precision_at_10
280
+ value: 9.571
281
+ - type: precision_at_100
282
+ value: 1.4949999999999999
283
+ - type: precision_at_1000
284
+ value: 0.196
285
+ - type: precision_at_3
286
+ value: 21.173000000000002
287
+ - type: precision_at_5
288
+ value: 15.622
289
+ - type: recall_at_1
290
+ value: 33.183
291
+ - type: recall_at_10
292
+ value: 62.134
293
+ - type: recall_at_100
294
+ value: 82.73
295
+ - type: recall_at_1000
296
+ value: 94.93599999999999
297
+ - type: recall_at_3
298
+ value: 46.497
299
+ - type: recall_at_5
300
+ value: 53.199
301
+ - task:
302
+ type: Retrieval
303
+ dataset:
304
+ name: MTEB CQADupstackEnglishRetrieval
305
+ type: mteb/cqadupstack-english
306
+ config: default
307
+ split: test
308
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
309
+ metrics:
310
+ - type: map_at_1
311
+ value: 32.862
312
+ - type: map_at_10
313
+ value: 42.439
314
+ - type: map_at_100
315
+ value: 43.736999999999995
316
+ - type: map_at_1000
317
+ value: 43.864
318
+ - type: map_at_3
319
+ value: 39.67
320
+ - type: map_at_5
321
+ value: 41.202
322
+ - type: mrr_at_1
323
+ value: 40.892
324
+ - type: mrr_at_10
325
+ value: 48.61
326
+ - type: mrr_at_100
327
+ value: 49.29
328
+ - type: mrr_at_1000
329
+ value: 49.332
330
+ - type: mrr_at_3
331
+ value: 46.688
332
+ - type: mrr_at_5
333
+ value: 47.803000000000004
334
+ - type: ndcg_at_1
335
+ value: 40.892
336
+ - type: ndcg_at_10
337
+ value: 47.797
338
+ - type: ndcg_at_100
339
+ value: 52.17699999999999
340
+ - type: ndcg_at_1000
341
+ value: 54.127
342
+ - type: ndcg_at_3
343
+ value: 44.189
344
+ - type: ndcg_at_5
345
+ value: 45.821
346
+ - type: precision_at_1
347
+ value: 40.892
348
+ - type: precision_at_10
349
+ value: 8.841000000000001
350
+ - type: precision_at_100
351
+ value: 1.419
352
+ - type: precision_at_1000
353
+ value: 0.188
354
+ - type: precision_at_3
355
+ value: 21.104
356
+ - type: precision_at_5
357
+ value: 14.777000000000001
358
+ - type: recall_at_1
359
+ value: 32.862
360
+ - type: recall_at_10
361
+ value: 56.352999999999994
362
+ - type: recall_at_100
363
+ value: 74.795
364
+ - type: recall_at_1000
365
+ value: 86.957
366
+ - type: recall_at_3
367
+ value: 45.269999999999996
368
+ - type: recall_at_5
369
+ value: 50.053000000000004
370
+ - task:
371
+ type: Retrieval
372
+ dataset:
373
+ name: MTEB CQADupstackGamingRetrieval
374
+ type: mteb/cqadupstack-gaming
375
+ config: default
376
+ split: test
377
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
378
+ metrics:
379
+ - type: map_at_1
380
+ value: 42.998999999999995
381
+ - type: map_at_10
382
+ value: 54.745
383
+ - type: map_at_100
384
+ value: 55.650999999999996
385
+ - type: map_at_1000
386
+ value: 55.703
387
+ - type: map_at_3
388
+ value: 51.67
389
+ - type: map_at_5
390
+ value: 53.503
391
+ - type: mrr_at_1
392
+ value: 49.028
393
+ - type: mrr_at_10
394
+ value: 58.172000000000004
395
+ - type: mrr_at_100
396
+ value: 58.744
397
+ - type: mrr_at_1000
398
+ value: 58.769000000000005
399
+ - type: mrr_at_3
400
+ value: 55.977
401
+ - type: mrr_at_5
402
+ value: 57.38799999999999
403
+ - type: ndcg_at_1
404
+ value: 49.028
405
+ - type: ndcg_at_10
406
+ value: 60.161
407
+ - type: ndcg_at_100
408
+ value: 63.806
409
+ - type: ndcg_at_1000
410
+ value: 64.821
411
+ - type: ndcg_at_3
412
+ value: 55.199
413
+ - type: ndcg_at_5
414
+ value: 57.830999999999996
415
+ - type: precision_at_1
416
+ value: 49.028
417
+ - type: precision_at_10
418
+ value: 9.455
419
+ - type: precision_at_100
420
+ value: 1.216
421
+ - type: precision_at_1000
422
+ value: 0.135
423
+ - type: precision_at_3
424
+ value: 24.242
425
+ - type: precision_at_5
426
+ value: 16.614
427
+ - type: recall_at_1
428
+ value: 42.998999999999995
429
+ - type: recall_at_10
430
+ value: 72.542
431
+ - type: recall_at_100
432
+ value: 88.605
433
+ - type: recall_at_1000
434
+ value: 95.676
435
+ - type: recall_at_3
436
+ value: 59.480999999999995
437
+ - type: recall_at_5
438
+ value: 65.886
439
+ - task:
440
+ type: Retrieval
441
+ dataset:
442
+ name: MTEB CQADupstackGisRetrieval
443
+ type: mteb/cqadupstack-gis
444
+ config: default
445
+ split: test
446
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
447
+ metrics:
448
+ - type: map_at_1
449
+ value: 27.907
450
+ - type: map_at_10
451
+ value: 35.975
452
+ - type: map_at_100
453
+ value: 36.985
454
+ - type: map_at_1000
455
+ value: 37.063
456
+ - type: map_at_3
457
+ value: 33.467999999999996
458
+ - type: map_at_5
459
+ value: 34.749
460
+ - type: mrr_at_1
461
+ value: 30.056
462
+ - type: mrr_at_10
463
+ value: 38.047
464
+ - type: mrr_at_100
465
+ value: 38.932
466
+ - type: mrr_at_1000
467
+ value: 38.991
468
+ - type: mrr_at_3
469
+ value: 35.705999999999996
470
+ - type: mrr_at_5
471
+ value: 36.966
472
+ - type: ndcg_at_1
473
+ value: 30.056
474
+ - type: ndcg_at_10
475
+ value: 40.631
476
+ - type: ndcg_at_100
477
+ value: 45.564
478
+ - type: ndcg_at_1000
479
+ value: 47.685
480
+ - type: ndcg_at_3
481
+ value: 35.748000000000005
482
+ - type: ndcg_at_5
483
+ value: 37.921
484
+ - type: precision_at_1
485
+ value: 30.056
486
+ - type: precision_at_10
487
+ value: 6.079
488
+ - type: precision_at_100
489
+ value: 0.898
490
+ - type: precision_at_1000
491
+ value: 0.11199999999999999
492
+ - type: precision_at_3
493
+ value: 14.727
494
+ - type: precision_at_5
495
+ value: 10.056
496
+ - type: recall_at_1
497
+ value: 27.907
498
+ - type: recall_at_10
499
+ value: 52.981
500
+ - type: recall_at_100
501
+ value: 75.53999999999999
502
+ - type: recall_at_1000
503
+ value: 91.759
504
+ - type: recall_at_3
505
+ value: 39.878
506
+ - type: recall_at_5
507
+ value: 45.077
508
+ - task:
509
+ type: Retrieval
510
+ dataset:
511
+ name: MTEB CQADupstackMathematicaRetrieval
512
+ type: mteb/cqadupstack-mathematica
513
+ config: default
514
+ split: test
515
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
516
+ metrics:
517
+ - type: map_at_1
518
+ value: 16.764000000000003
519
+ - type: map_at_10
520
+ value: 24.294
521
+ - type: map_at_100
522
+ value: 25.507999999999996
523
+ - type: map_at_1000
524
+ value: 25.64
525
+ - type: map_at_3
526
+ value: 21.807000000000002
527
+ - type: map_at_5
528
+ value: 23.21
529
+ - type: mrr_at_1
530
+ value: 20.771
531
+ - type: mrr_at_10
532
+ value: 28.677000000000003
533
+ - type: mrr_at_100
534
+ value: 29.742
535
+ - type: mrr_at_1000
536
+ value: 29.816
537
+ - type: mrr_at_3
538
+ value: 26.327
539
+ - type: mrr_at_5
540
+ value: 27.639000000000003
541
+ - type: ndcg_at_1
542
+ value: 20.771
543
+ - type: ndcg_at_10
544
+ value: 29.21
545
+ - type: ndcg_at_100
546
+ value: 34.788000000000004
547
+ - type: ndcg_at_1000
548
+ value: 37.813
549
+ - type: ndcg_at_3
550
+ value: 24.632
551
+ - type: ndcg_at_5
552
+ value: 26.801000000000002
553
+ - type: precision_at_1
554
+ value: 20.771
555
+ - type: precision_at_10
556
+ value: 5.373
557
+ - type: precision_at_100
558
+ value: 0.923
559
+ - type: precision_at_1000
560
+ value: 0.133
561
+ - type: precision_at_3
562
+ value: 12.065
563
+ - type: precision_at_5
564
+ value: 8.706
565
+ - type: recall_at_1
566
+ value: 16.764000000000003
567
+ - type: recall_at_10
568
+ value: 40.072
569
+ - type: recall_at_100
570
+ value: 63.856
571
+ - type: recall_at_1000
572
+ value: 85.141
573
+ - type: recall_at_3
574
+ value: 27.308
575
+ - type: recall_at_5
576
+ value: 32.876
577
+ - task:
578
+ type: Retrieval
579
+ dataset:
580
+ name: MTEB CQADupstackPhysicsRetrieval
581
+ type: mteb/cqadupstack-physics
582
+ config: default
583
+ split: test
584
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
585
+ metrics:
586
+ - type: map_at_1
587
+ value: 31.194
588
+ - type: map_at_10
589
+ value: 40.731
590
+ - type: map_at_100
591
+ value: 42.073
592
+ - type: map_at_1000
593
+ value: 42.178
594
+ - type: map_at_3
595
+ value: 37.726
596
+ - type: map_at_5
597
+ value: 39.474
598
+ - type: mrr_at_1
599
+ value: 37.729
600
+ - type: mrr_at_10
601
+ value: 46.494
602
+ - type: mrr_at_100
603
+ value: 47.368
604
+ - type: mrr_at_1000
605
+ value: 47.407
606
+ - type: mrr_at_3
607
+ value: 44.224999999999994
608
+ - type: mrr_at_5
609
+ value: 45.582
610
+ - type: ndcg_at_1
611
+ value: 37.729
612
+ - type: ndcg_at_10
613
+ value: 46.312999999999995
614
+ - type: ndcg_at_100
615
+ value: 51.915
616
+ - type: ndcg_at_1000
617
+ value: 53.788000000000004
618
+ - type: ndcg_at_3
619
+ value: 41.695
620
+ - type: ndcg_at_5
621
+ value: 43.956
622
+ - type: precision_at_1
623
+ value: 37.729
624
+ - type: precision_at_10
625
+ value: 8.181
626
+ - type: precision_at_100
627
+ value: 1.275
628
+ - type: precision_at_1000
629
+ value: 0.16199999999999998
630
+ - type: precision_at_3
631
+ value: 19.41
632
+ - type: precision_at_5
633
+ value: 13.648
634
+ - type: recall_at_1
635
+ value: 31.194
636
+ - type: recall_at_10
637
+ value: 57.118
638
+ - type: recall_at_100
639
+ value: 80.759
640
+ - type: recall_at_1000
641
+ value: 92.779
642
+ - type: recall_at_3
643
+ value: 44.083
644
+ - type: recall_at_5
645
+ value: 50.044999999999995
646
+ - task:
647
+ type: Retrieval
648
+ dataset:
649
+ name: MTEB CQADupstackProgrammersRetrieval
650
+ type: mteb/cqadupstack-programmers
651
+ config: default
652
+ split: test
653
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
654
+ metrics:
655
+ - type: map_at_1
656
+ value: 28.047
657
+ - type: map_at_10
658
+ value: 37.79
659
+ - type: map_at_100
660
+ value: 39.145
661
+ - type: map_at_1000
662
+ value: 39.254
663
+ - type: map_at_3
664
+ value: 34.857
665
+ - type: map_at_5
666
+ value: 36.545
667
+ - type: mrr_at_1
668
+ value: 35.388
669
+ - type: mrr_at_10
670
+ value: 43.475
671
+ - type: mrr_at_100
672
+ value: 44.440000000000005
673
+ - type: mrr_at_1000
674
+ value: 44.494
675
+ - type: mrr_at_3
676
+ value: 41.286
677
+ - type: mrr_at_5
678
+ value: 42.673
679
+ - type: ndcg_at_1
680
+ value: 35.388
681
+ - type: ndcg_at_10
682
+ value: 43.169000000000004
683
+ - type: ndcg_at_100
684
+ value: 48.785000000000004
685
+ - type: ndcg_at_1000
686
+ value: 51.029
687
+ - type: ndcg_at_3
688
+ value: 38.801
689
+ - type: ndcg_at_5
690
+ value: 40.9
691
+ - type: precision_at_1
692
+ value: 35.388
693
+ - type: precision_at_10
694
+ value: 7.7509999999999994
695
+ - type: precision_at_100
696
+ value: 1.212
697
+ - type: precision_at_1000
698
+ value: 0.157
699
+ - type: precision_at_3
700
+ value: 18.455
701
+ - type: precision_at_5
702
+ value: 13.014000000000001
703
+ - type: recall_at_1
704
+ value: 28.047
705
+ - type: recall_at_10
706
+ value: 53.53099999999999
707
+ - type: recall_at_100
708
+ value: 77.285
709
+ - type: recall_at_1000
710
+ value: 92.575
711
+ - type: recall_at_3
712
+ value: 40.949000000000005
713
+ - type: recall_at_5
714
+ value: 46.742
715
+ - task:
716
+ type: Retrieval
717
+ dataset:
718
+ name: MTEB CQADupstackRetrieval
719
+ type: mteb/cqadupstack
720
+ config: default
721
+ split: test
722
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
723
+ metrics:
724
+ - type: map_at_1
725
+ value: 28.131999999999994
726
+ - type: map_at_10
727
+ value: 36.93333333333334
728
+ - type: map_at_100
729
+ value: 38.117250000000006
730
+ - type: map_at_1000
731
+ value: 38.23275
732
+ - type: map_at_3
733
+ value: 34.19708333333333
734
+ - type: map_at_5
735
+ value: 35.725166666666674
736
+ - type: mrr_at_1
737
+ value: 33.16116666666667
738
+ - type: mrr_at_10
739
+ value: 41.057833333333335
740
+ - type: mrr_at_100
741
+ value: 41.90033333333333
742
+ - type: mrr_at_1000
743
+ value: 41.95625
744
+ - type: mrr_at_3
745
+ value: 38.757333333333335
746
+ - type: mrr_at_5
747
+ value: 40.097333333333324
748
+ - type: ndcg_at_1
749
+ value: 33.16116666666667
750
+ - type: ndcg_at_10
751
+ value: 42.01983333333333
752
+ - type: ndcg_at_100
753
+ value: 46.99916666666667
754
+ - type: ndcg_at_1000
755
+ value: 49.21783333333334
756
+ - type: ndcg_at_3
757
+ value: 37.479916666666654
758
+ - type: ndcg_at_5
759
+ value: 39.6355
760
+ - type: precision_at_1
761
+ value: 33.16116666666667
762
+ - type: precision_at_10
763
+ value: 7.230249999999999
764
+ - type: precision_at_100
765
+ value: 1.1411666666666667
766
+ - type: precision_at_1000
767
+ value: 0.1520833333333333
768
+ - type: precision_at_3
769
+ value: 17.028166666666667
770
+ - type: precision_at_5
771
+ value: 12.046999999999999
772
+ - type: recall_at_1
773
+ value: 28.131999999999994
774
+ - type: recall_at_10
775
+ value: 52.825500000000005
776
+ - type: recall_at_100
777
+ value: 74.59608333333333
778
+ - type: recall_at_1000
779
+ value: 89.87916666666668
780
+ - type: recall_at_3
781
+ value: 40.13625
782
+ - type: recall_at_5
783
+ value: 45.699999999999996
784
+ - task:
785
+ type: Retrieval
786
+ dataset:
787
+ name: MTEB CQADupstackStatsRetrieval
788
+ type: mteb/cqadupstack-stats
789
+ config: default
790
+ split: test
791
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
792
+ metrics:
793
+ - type: map_at_1
794
+ value: 24.773999999999997
795
+ - type: map_at_10
796
+ value: 31.997999999999998
797
+ - type: map_at_100
798
+ value: 32.857
799
+ - type: map_at_1000
800
+ value: 32.957
801
+ - type: map_at_3
802
+ value: 30.041
803
+ - type: map_at_5
804
+ value: 31.119000000000003
805
+ - type: mrr_at_1
806
+ value: 27.607
807
+ - type: mrr_at_10
808
+ value: 34.538000000000004
809
+ - type: mrr_at_100
810
+ value: 35.308
811
+ - type: mrr_at_1000
812
+ value: 35.375
813
+ - type: mrr_at_3
814
+ value: 32.643
815
+ - type: mrr_at_5
816
+ value: 33.755
817
+ - type: ndcg_at_1
818
+ value: 27.607
819
+ - type: ndcg_at_10
820
+ value: 36.035000000000004
821
+ - type: ndcg_at_100
822
+ value: 40.351
823
+ - type: ndcg_at_1000
824
+ value: 42.684
825
+ - type: ndcg_at_3
826
+ value: 32.414
827
+ - type: ndcg_at_5
828
+ value: 34.11
829
+ - type: precision_at_1
830
+ value: 27.607
831
+ - type: precision_at_10
832
+ value: 5.6129999999999995
833
+ - type: precision_at_100
834
+ value: 0.8370000000000001
835
+ - type: precision_at_1000
836
+ value: 0.11199999999999999
837
+ - type: precision_at_3
838
+ value: 13.957
839
+ - type: precision_at_5
840
+ value: 9.571
841
+ - type: recall_at_1
842
+ value: 24.773999999999997
843
+ - type: recall_at_10
844
+ value: 45.717
845
+ - type: recall_at_100
846
+ value: 65.499
847
+ - type: recall_at_1000
848
+ value: 82.311
849
+ - type: recall_at_3
850
+ value: 35.716
851
+ - type: recall_at_5
852
+ value: 40.007999999999996
853
+ - task:
854
+ type: Retrieval
855
+ dataset:
856
+ name: MTEB CQADupstackTexRetrieval
857
+ type: mteb/cqadupstack-tex
858
+ config: default
859
+ split: test
860
+ revision: 46989137a86843e03a6195de44b09deda022eec7
861
+ metrics:
862
+ - type: map_at_1
863
+ value: 19.227
864
+ - type: map_at_10
865
+ value: 26.649
866
+ - type: map_at_100
867
+ value: 27.711999999999996
868
+ - type: map_at_1000
869
+ value: 27.837
870
+ - type: map_at_3
871
+ value: 24.454
872
+ - type: map_at_5
873
+ value: 25.772000000000002
874
+ - type: mrr_at_1
875
+ value: 23.433999999999997
876
+ - type: mrr_at_10
877
+ value: 30.564999999999998
878
+ - type: mrr_at_100
879
+ value: 31.44
880
+ - type: mrr_at_1000
881
+ value: 31.513999999999996
882
+ - type: mrr_at_3
883
+ value: 28.435
884
+ - type: mrr_at_5
885
+ value: 29.744999999999997
886
+ - type: ndcg_at_1
887
+ value: 23.433999999999997
888
+ - type: ndcg_at_10
889
+ value: 31.104
890
+ - type: ndcg_at_100
891
+ value: 36.172
892
+ - type: ndcg_at_1000
893
+ value: 39.006
894
+ - type: ndcg_at_3
895
+ value: 27.248
896
+ - type: ndcg_at_5
897
+ value: 29.249000000000002
898
+ - type: precision_at_1
899
+ value: 23.433999999999997
900
+ - type: precision_at_10
901
+ value: 5.496
902
+ - type: precision_at_100
903
+ value: 0.9490000000000001
904
+ - type: precision_at_1000
905
+ value: 0.13699999999999998
906
+ - type: precision_at_3
907
+ value: 12.709000000000001
908
+ - type: precision_at_5
909
+ value: 9.209
910
+ - type: recall_at_1
911
+ value: 19.227
912
+ - type: recall_at_10
913
+ value: 40.492
914
+ - type: recall_at_100
915
+ value: 63.304
916
+ - type: recall_at_1000
917
+ value: 83.45
918
+ - type: recall_at_3
919
+ value: 29.713
920
+ - type: recall_at_5
921
+ value: 34.82
922
+ - task:
923
+ type: Retrieval
924
+ dataset:
925
+ name: MTEB CQADupstackUnixRetrieval
926
+ type: mteb/cqadupstack-unix
927
+ config: default
928
+ split: test
929
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
930
+ metrics:
931
+ - type: map_at_1
932
+ value: 29.199
933
+ - type: map_at_10
934
+ value: 37.617
935
+ - type: map_at_100
936
+ value: 38.746
937
+ - type: map_at_1000
938
+ value: 38.851
939
+ - type: map_at_3
940
+ value: 34.882000000000005
941
+ - type: map_at_5
942
+ value: 36.571999999999996
943
+ - type: mrr_at_1
944
+ value: 33.489000000000004
945
+ - type: mrr_at_10
946
+ value: 41.089999999999996
947
+ - type: mrr_at_100
948
+ value: 41.965
949
+ - type: mrr_at_1000
950
+ value: 42.028
951
+ - type: mrr_at_3
952
+ value: 38.666
953
+ - type: mrr_at_5
954
+ value: 40.159
955
+ - type: ndcg_at_1
956
+ value: 33.489000000000004
957
+ - type: ndcg_at_10
958
+ value: 42.487
959
+ - type: ndcg_at_100
960
+ value: 47.552
961
+ - type: ndcg_at_1000
962
+ value: 49.774
963
+ - type: ndcg_at_3
964
+ value: 37.623
965
+ - type: ndcg_at_5
966
+ value: 40.184999999999995
967
+ - type: precision_at_1
968
+ value: 33.489000000000004
969
+ - type: precision_at_10
970
+ value: 6.94
971
+ - type: precision_at_100
972
+ value: 1.0699999999999998
973
+ - type: precision_at_1000
974
+ value: 0.136
975
+ - type: precision_at_3
976
+ value: 16.667
977
+ - type: precision_at_5
978
+ value: 11.922
979
+ - type: recall_at_1
980
+ value: 29.199
981
+ - type: recall_at_10
982
+ value: 53.689
983
+ - type: recall_at_100
984
+ value: 75.374
985
+ - type: recall_at_1000
986
+ value: 90.64999999999999
987
+ - type: recall_at_3
988
+ value: 40.577999999999996
989
+ - type: recall_at_5
990
+ value: 46.909
991
+ - task:
992
+ type: Retrieval
993
+ dataset:
994
+ name: MTEB CQADupstackWebmastersRetrieval
995
+ type: mteb/cqadupstack-webmasters
996
+ config: default
997
+ split: test
998
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
999
+ metrics:
1000
+ - type: map_at_1
1001
+ value: 27.206999999999997
1002
+ - type: map_at_10
1003
+ value: 36.146
1004
+ - type: map_at_100
1005
+ value: 37.759
1006
+ - type: map_at_1000
1007
+ value: 37.979
1008
+ - type: map_at_3
1009
+ value: 32.967999999999996
1010
+ - type: map_at_5
1011
+ value: 34.809
1012
+ - type: mrr_at_1
1013
+ value: 32.806000000000004
1014
+ - type: mrr_at_10
1015
+ value: 40.449
1016
+ - type: mrr_at_100
1017
+ value: 41.404999999999994
1018
+ - type: mrr_at_1000
1019
+ value: 41.457
1020
+ - type: mrr_at_3
1021
+ value: 37.614999999999995
1022
+ - type: mrr_at_5
1023
+ value: 39.324999999999996
1024
+ - type: ndcg_at_1
1025
+ value: 32.806000000000004
1026
+ - type: ndcg_at_10
1027
+ value: 41.911
1028
+ - type: ndcg_at_100
1029
+ value: 47.576
1030
+ - type: ndcg_at_1000
1031
+ value: 50.072
1032
+ - type: ndcg_at_3
1033
+ value: 36.849
1034
+ - type: ndcg_at_5
1035
+ value: 39.475
1036
+ - type: precision_at_1
1037
+ value: 32.806000000000004
1038
+ - type: precision_at_10
1039
+ value: 8.103
1040
+ - type: precision_at_100
1041
+ value: 1.557
1042
+ - type: precision_at_1000
1043
+ value: 0.242
1044
+ - type: precision_at_3
1045
+ value: 17.26
1046
+ - type: precision_at_5
1047
+ value: 12.885
1048
+ - type: recall_at_1
1049
+ value: 27.206999999999997
1050
+ - type: recall_at_10
1051
+ value: 52.56999999999999
1052
+ - type: recall_at_100
1053
+ value: 78.302
1054
+ - type: recall_at_1000
1055
+ value: 94.121
1056
+ - type: recall_at_3
1057
+ value: 38.317
1058
+ - type: recall_at_5
1059
+ value: 45.410000000000004
1060
+ - task:
1061
+ type: Retrieval
1062
+ dataset:
1063
+ name: MTEB CQADupstackWordpressRetrieval
1064
+ type: mteb/cqadupstack-wordpress
1065
+ config: default
1066
+ split: test
1067
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1068
+ metrics:
1069
+ - type: map_at_1
1070
+ value: 24.221
1071
+ - type: map_at_10
1072
+ value: 30.826999999999998
1073
+ - type: map_at_100
1074
+ value: 31.845000000000002
1075
+ - type: map_at_1000
1076
+ value: 31.95
1077
+ - type: map_at_3
1078
+ value: 28.547
1079
+ - type: map_at_5
1080
+ value: 29.441
1081
+ - type: mrr_at_1
1082
+ value: 26.247999999999998
1083
+ - type: mrr_at_10
1084
+ value: 32.957
1085
+ - type: mrr_at_100
1086
+ value: 33.819
1087
+ - type: mrr_at_1000
1088
+ value: 33.899
1089
+ - type: mrr_at_3
1090
+ value: 30.714999999999996
1091
+ - type: mrr_at_5
1092
+ value: 31.704
1093
+ - type: ndcg_at_1
1094
+ value: 26.247999999999998
1095
+ - type: ndcg_at_10
1096
+ value: 35.171
1097
+ - type: ndcg_at_100
1098
+ value: 40.098
1099
+ - type: ndcg_at_1000
1100
+ value: 42.67
1101
+ - type: ndcg_at_3
1102
+ value: 30.508999999999997
1103
+ - type: ndcg_at_5
1104
+ value: 32.022
1105
+ - type: precision_at_1
1106
+ value: 26.247999999999998
1107
+ - type: precision_at_10
1108
+ value: 5.36
1109
+ - type: precision_at_100
1110
+ value: 0.843
1111
+ - type: precision_at_1000
1112
+ value: 0.11499999999999999
1113
+ - type: precision_at_3
1114
+ value: 12.568999999999999
1115
+ - type: precision_at_5
1116
+ value: 8.540000000000001
1117
+ - type: recall_at_1
1118
+ value: 24.221
1119
+ - type: recall_at_10
1120
+ value: 46.707
1121
+ - type: recall_at_100
1122
+ value: 69.104
1123
+ - type: recall_at_1000
1124
+ value: 88.19500000000001
1125
+ - type: recall_at_3
1126
+ value: 33.845
1127
+ - type: recall_at_5
1128
+ value: 37.375
1129
+ - task:
1130
+ type: Retrieval
1131
+ dataset:
1132
+ name: MTEB ClimateFEVER
1133
+ type: mteb/climate-fever
1134
+ config: default
1135
+ split: test
1136
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1137
+ metrics:
1138
+ - type: map_at_1
1139
+ value: 13.624
1140
+ - type: map_at_10
1141
+ value: 22.557
1142
+ - type: map_at_100
1143
+ value: 24.367
1144
+ - type: map_at_1000
1145
+ value: 24.54
1146
+ - type: map_at_3
1147
+ value: 18.988
1148
+ - type: map_at_5
1149
+ value: 20.785999999999998
1150
+ - type: mrr_at_1
1151
+ value: 30.619000000000003
1152
+ - type: mrr_at_10
1153
+ value: 42.019
1154
+ - type: mrr_at_100
1155
+ value: 42.818
1156
+ - type: mrr_at_1000
1157
+ value: 42.856
1158
+ - type: mrr_at_3
1159
+ value: 38.578
1160
+ - type: mrr_at_5
1161
+ value: 40.669
1162
+ - type: ndcg_at_1
1163
+ value: 30.619000000000003
1164
+ - type: ndcg_at_10
1165
+ value: 31.252999999999997
1166
+ - type: ndcg_at_100
1167
+ value: 38.238
1168
+ - type: ndcg_at_1000
1169
+ value: 41.368
1170
+ - type: ndcg_at_3
1171
+ value: 25.843
1172
+ - type: ndcg_at_5
1173
+ value: 27.638
1174
+ - type: precision_at_1
1175
+ value: 30.619000000000003
1176
+ - type: precision_at_10
1177
+ value: 9.687
1178
+ - type: precision_at_100
1179
+ value: 1.718
1180
+ - type: precision_at_1000
1181
+ value: 0.22999999999999998
1182
+ - type: precision_at_3
1183
+ value: 18.849
1184
+ - type: precision_at_5
1185
+ value: 14.463000000000001
1186
+ - type: recall_at_1
1187
+ value: 13.624
1188
+ - type: recall_at_10
1189
+ value: 36.693999999999996
1190
+ - type: recall_at_100
1191
+ value: 60.9
1192
+ - type: recall_at_1000
1193
+ value: 78.46
1194
+ - type: recall_at_3
1195
+ value: 23.354
1196
+ - type: recall_at_5
1197
+ value: 28.756999999999998
1198
+ - task:
1199
+ type: Retrieval
1200
+ dataset:
1201
+ name: MTEB DBPedia
1202
+ type: mteb/dbpedia
1203
+ config: default
1204
+ split: test
1205
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1206
+ metrics:
1207
+ - type: map_at_1
1208
+ value: 9.077
1209
+ - type: map_at_10
1210
+ value: 19.813
1211
+ - type: map_at_100
1212
+ value: 27.822999999999997
1213
+ - type: map_at_1000
1214
+ value: 29.485
1215
+ - type: map_at_3
1216
+ value: 14.255999999999998
1217
+ - type: map_at_5
1218
+ value: 16.836000000000002
1219
+ - type: mrr_at_1
1220
+ value: 69.25
1221
+ - type: mrr_at_10
1222
+ value: 77.059
1223
+ - type: mrr_at_100
1224
+ value: 77.41
1225
+ - type: mrr_at_1000
1226
+ value: 77.416
1227
+ - type: mrr_at_3
1228
+ value: 75.625
1229
+ - type: mrr_at_5
1230
+ value: 76.512
1231
+ - type: ndcg_at_1
1232
+ value: 55.75
1233
+ - type: ndcg_at_10
1234
+ value: 41.587
1235
+ - type: ndcg_at_100
1236
+ value: 46.048
1237
+ - type: ndcg_at_1000
1238
+ value: 53.172
1239
+ - type: ndcg_at_3
1240
+ value: 46.203
1241
+ - type: ndcg_at_5
1242
+ value: 43.696
1243
+ - type: precision_at_1
1244
+ value: 69.25
1245
+ - type: precision_at_10
1246
+ value: 32.95
1247
+ - type: precision_at_100
1248
+ value: 10.555
1249
+ - type: precision_at_1000
1250
+ value: 2.136
1251
+ - type: precision_at_3
1252
+ value: 49.667
1253
+ - type: precision_at_5
1254
+ value: 42.5
1255
+ - type: recall_at_1
1256
+ value: 9.077
1257
+ - type: recall_at_10
1258
+ value: 25.249
1259
+ - type: recall_at_100
1260
+ value: 51.964
1261
+ - type: recall_at_1000
1262
+ value: 74.51
1263
+ - type: recall_at_3
1264
+ value: 15.584000000000001
1265
+ - type: recall_at_5
1266
+ value: 19.717000000000002
1267
+ - task:
1268
+ type: Classification
1269
+ dataset:
1270
+ name: MTEB EmotionClassification
1271
+ type: mteb/emotion
1272
+ config: default
1273
+ split: test
1274
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1275
+ metrics:
1276
+ - type: accuracy
1277
+ value: 45.769999999999996
1278
+ - type: f1
1279
+ value: 41.64144711933962
1280
+ - task:
1281
+ type: Retrieval
1282
+ dataset:
1283
+ name: MTEB FEVER
1284
+ type: mteb/fever
1285
+ config: default
1286
+ split: test
1287
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1288
+ metrics:
1289
+ - type: map_at_1
1290
+ value: 67.098
1291
+ - type: map_at_10
1292
+ value: 77.69800000000001
1293
+ - type: map_at_100
1294
+ value: 77.947
1295
+ - type: map_at_1000
1296
+ value: 77.961
1297
+ - type: map_at_3
1298
+ value: 76.278
1299
+ - type: map_at_5
1300
+ value: 77.217
1301
+ - type: mrr_at_1
1302
+ value: 72.532
1303
+ - type: mrr_at_10
1304
+ value: 82.41199999999999
1305
+ - type: mrr_at_100
1306
+ value: 82.527
1307
+ - type: mrr_at_1000
1308
+ value: 82.529
1309
+ - type: mrr_at_3
1310
+ value: 81.313
1311
+ - type: mrr_at_5
1312
+ value: 82.069
1313
+ - type: ndcg_at_1
1314
+ value: 72.532
1315
+ - type: ndcg_at_10
1316
+ value: 82.488
1317
+ - type: ndcg_at_100
1318
+ value: 83.382
1319
+ - type: ndcg_at_1000
1320
+ value: 83.622
1321
+ - type: ndcg_at_3
1322
+ value: 80.101
1323
+ - type: ndcg_at_5
1324
+ value: 81.52199999999999
1325
+ - type: precision_at_1
1326
+ value: 72.532
1327
+ - type: precision_at_10
1328
+ value: 10.203
1329
+ - type: precision_at_100
1330
+ value: 1.082
1331
+ - type: precision_at_1000
1332
+ value: 0.11199999999999999
1333
+ - type: precision_at_3
1334
+ value: 31.308000000000003
1335
+ - type: precision_at_5
1336
+ value: 19.652
1337
+ - type: recall_at_1
1338
+ value: 67.098
1339
+ - type: recall_at_10
1340
+ value: 92.511
1341
+ - type: recall_at_100
1342
+ value: 96.06099999999999
1343
+ - type: recall_at_1000
1344
+ value: 97.548
1345
+ - type: recall_at_3
1346
+ value: 86.105
1347
+ - type: recall_at_5
1348
+ value: 89.661
1349
+ - task:
1350
+ type: Retrieval
1351
+ dataset:
1352
+ name: MTEB FiQA2018
1353
+ type: mteb/fiqa
1354
+ config: default
1355
+ split: test
1356
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1357
+ metrics:
1358
+ - type: map_at_1
1359
+ value: 18.681
1360
+ - type: map_at_10
1361
+ value: 31.739
1362
+ - type: map_at_100
1363
+ value: 33.503
1364
+ - type: map_at_1000
1365
+ value: 33.69
1366
+ - type: map_at_3
1367
+ value: 27.604
1368
+ - type: map_at_5
1369
+ value: 29.993
1370
+ - type: mrr_at_1
1371
+ value: 37.5
1372
+ - type: mrr_at_10
1373
+ value: 46.933
1374
+ - type: mrr_at_100
1375
+ value: 47.771
1376
+ - type: mrr_at_1000
1377
+ value: 47.805
1378
+ - type: mrr_at_3
1379
+ value: 44.239
1380
+ - type: mrr_at_5
1381
+ value: 45.766
1382
+ - type: ndcg_at_1
1383
+ value: 37.5
1384
+ - type: ndcg_at_10
1385
+ value: 39.682
1386
+ - type: ndcg_at_100
1387
+ value: 46.127
1388
+ - type: ndcg_at_1000
1389
+ value: 48.994
1390
+ - type: ndcg_at_3
1391
+ value: 35.655
1392
+ - type: ndcg_at_5
1393
+ value: 37.036
1394
+ - type: precision_at_1
1395
+ value: 37.5
1396
+ - type: precision_at_10
1397
+ value: 11.08
1398
+ - type: precision_at_100
1399
+ value: 1.765
1400
+ - type: precision_at_1000
1401
+ value: 0.22999999999999998
1402
+ - type: precision_at_3
1403
+ value: 23.919999999999998
1404
+ - type: precision_at_5
1405
+ value: 17.809
1406
+ - type: recall_at_1
1407
+ value: 18.681
1408
+ - type: recall_at_10
1409
+ value: 47.548
1410
+ - type: recall_at_100
1411
+ value: 71.407
1412
+ - type: recall_at_1000
1413
+ value: 87.805
1414
+ - type: recall_at_3
1415
+ value: 32.979
1416
+ - type: recall_at_5
1417
+ value: 39.192
1418
+ - task:
1419
+ type: Retrieval
1420
+ dataset:
1421
+ name: MTEB HotpotQA
1422
+ type: mteb/hotpotqa
1423
+ config: default
1424
+ split: test
1425
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1426
+ metrics:
1427
+ - type: map_at_1
1428
+ value: 38.257999999999996
1429
+ - type: map_at_10
1430
+ value: 57.605
1431
+ - type: map_at_100
1432
+ value: 58.50300000000001
1433
+ - type: map_at_1000
1434
+ value: 58.568
1435
+ - type: map_at_3
1436
+ value: 54.172
1437
+ - type: map_at_5
1438
+ value: 56.323
1439
+ - type: mrr_at_1
1440
+ value: 76.51599999999999
1441
+ - type: mrr_at_10
1442
+ value: 82.584
1443
+ - type: mrr_at_100
1444
+ value: 82.78
1445
+ - type: mrr_at_1000
1446
+ value: 82.787
1447
+ - type: mrr_at_3
1448
+ value: 81.501
1449
+ - type: mrr_at_5
1450
+ value: 82.185
1451
+ - type: ndcg_at_1
1452
+ value: 76.51599999999999
1453
+ - type: ndcg_at_10
1454
+ value: 66.593
1455
+ - type: ndcg_at_100
1456
+ value: 69.699
1457
+ - type: ndcg_at_1000
1458
+ value: 70.953
1459
+ - type: ndcg_at_3
1460
+ value: 61.673
1461
+ - type: ndcg_at_5
1462
+ value: 64.42
1463
+ - type: precision_at_1
1464
+ value: 76.51599999999999
1465
+ - type: precision_at_10
1466
+ value: 13.857
1467
+ - type: precision_at_100
1468
+ value: 1.628
1469
+ - type: precision_at_1000
1470
+ value: 0.179
1471
+ - type: precision_at_3
1472
+ value: 38.956
1473
+ - type: precision_at_5
1474
+ value: 25.541999999999998
1475
+ - type: recall_at_1
1476
+ value: 38.257999999999996
1477
+ - type: recall_at_10
1478
+ value: 69.284
1479
+ - type: recall_at_100
1480
+ value: 81.391
1481
+ - type: recall_at_1000
1482
+ value: 89.689
1483
+ - type: recall_at_3
1484
+ value: 58.433
1485
+ - type: recall_at_5
1486
+ value: 63.856
1487
+ - task:
1488
+ type: Classification
1489
+ dataset:
1490
+ name: MTEB ImdbClassification
1491
+ type: mteb/imdb
1492
+ config: default
1493
+ split: test
1494
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1495
+ metrics:
1496
+ - type: accuracy
1497
+ value: 69.48679999999999
1498
+ - type: ap
1499
+ value: 63.97638838971138
1500
+ - type: f1
1501
+ value: 69.22731638841675
1502
+ - task:
1503
+ type: Retrieval
1504
+ dataset:
1505
+ name: MTEB MSMARCO
1506
+ type: mteb/msmarco
1507
+ config: default
1508
+ split: dev
1509
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1510
+ metrics:
1511
+ - type: map_at_1
1512
+ value: 20.916999999999998
1513
+ - type: map_at_10
1514
+ value: 32.929
1515
+ - type: map_at_100
1516
+ value: 34.1
1517
+ - type: map_at_1000
1518
+ value: 34.152
1519
+ - type: map_at_3
1520
+ value: 29.065
1521
+ - type: map_at_5
1522
+ value: 31.287
1523
+ - type: mrr_at_1
1524
+ value: 21.562
1525
+ - type: mrr_at_10
1526
+ value: 33.533
1527
+ - type: mrr_at_100
1528
+ value: 34.644000000000005
1529
+ - type: mrr_at_1000
1530
+ value: 34.69
1531
+ - type: mrr_at_3
1532
+ value: 29.735
1533
+ - type: mrr_at_5
1534
+ value: 31.928
1535
+ - type: ndcg_at_1
1536
+ value: 21.562
1537
+ - type: ndcg_at_10
1538
+ value: 39.788000000000004
1539
+ - type: ndcg_at_100
1540
+ value: 45.434999999999995
1541
+ - type: ndcg_at_1000
1542
+ value: 46.75
1543
+ - type: ndcg_at_3
1544
+ value: 31.942999999999998
1545
+ - type: ndcg_at_5
1546
+ value: 35.888
1547
+ - type: precision_at_1
1548
+ value: 21.562
1549
+ - type: precision_at_10
1550
+ value: 6.348
1551
+ - type: precision_at_100
1552
+ value: 0.918
1553
+ - type: precision_at_1000
1554
+ value: 0.10300000000000001
1555
+ - type: precision_at_3
1556
+ value: 13.682
1557
+ - type: precision_at_5
1558
+ value: 10.189
1559
+ - type: recall_at_1
1560
+ value: 20.916999999999998
1561
+ - type: recall_at_10
1562
+ value: 60.926
1563
+ - type: recall_at_100
1564
+ value: 87.03800000000001
1565
+ - type: recall_at_1000
1566
+ value: 97.085
1567
+ - type: recall_at_3
1568
+ value: 39.637
1569
+ - type: recall_at_5
1570
+ value: 49.069
1571
+ - task:
1572
+ type: Classification
1573
+ dataset:
1574
+ name: MTEB MTOPDomainClassification (en)
1575
+ type: mteb/mtop_domain
1576
+ config: en
1577
+ split: test
1578
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1579
+ metrics:
1580
+ - type: accuracy
1581
+ value: 90.93935248518011
1582
+ - type: f1
1583
+ value: 90.56439321844506
1584
+ - task:
1585
+ type: Classification
1586
+ dataset:
1587
+ name: MTEB MTOPIntentClassification (en)
1588
+ type: mteb/mtop_intent
1589
+ config: en
1590
+ split: test
1591
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1592
+ metrics:
1593
+ - type: accuracy
1594
+ value: 58.62517099863203
1595
+ - type: f1
1596
+ value: 40.69925681703197
1597
+ - task:
1598
+ type: Classification
1599
+ dataset:
1600
+ name: MTEB MasakhaNEWSClassification (eng)
1601
+ type: masakhane/masakhanews
1602
+ config: eng
1603
+ split: test
1604
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1605
+ metrics:
1606
+ - type: accuracy
1607
+ value: 76.29746835443039
1608
+ - type: f1
1609
+ value: 75.31702672039506
1610
+ - task:
1611
+ type: Clustering
1612
+ dataset:
1613
+ name: MTEB MasakhaNEWSClusteringP2P (eng)
1614
+ type: masakhane/masakhanews
1615
+ config: eng
1616
+ split: test
1617
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1618
+ metrics:
1619
+ - type: v_measure
1620
+ value: 43.05495067062023
1621
+ - type: v_measure
1622
+ value: 19.625272848173843
1623
+ - task:
1624
+ type: Classification
1625
+ dataset:
1626
+ name: MTEB MassiveIntentClassification (en)
1627
+ type: mteb/amazon_massive_intent
1628
+ config: en
1629
+ split: test
1630
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1631
+ metrics:
1632
+ - type: accuracy
1633
+ value: 64.76126429051781
1634
+ - type: f1
1635
+ value: 62.60284261265268
1636
+ - task:
1637
+ type: Classification
1638
+ dataset:
1639
+ name: MTEB MassiveScenarioClassification (en)
1640
+ type: mteb/amazon_massive_scenario
1641
+ config: en
1642
+ split: test
1643
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1644
+ metrics:
1645
+ - type: accuracy
1646
+ value: 70.05043712172159
1647
+ - type: f1
1648
+ value: 69.08340521169049
1649
+ - task:
1650
+ type: Clustering
1651
+ dataset:
1652
+ name: MTEB MedrxivClusteringP2P
1653
+ type: mteb/medrxiv-clustering-p2p
1654
+ config: default
1655
+ split: test
1656
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1657
+ metrics:
1658
+ - type: v_measure
1659
+ value: 30.78969229005989
1660
+ - task:
1661
+ type: Clustering
1662
+ dataset:
1663
+ name: MTEB MedrxivClusteringS2S
1664
+ type: mteb/medrxiv-clustering-s2s
1665
+ config: default
1666
+ split: test
1667
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1668
+ metrics:
1669
+ - type: v_measure
1670
+ value: 27.954325178520335
1671
+ - task:
1672
+ type: Reranking
1673
+ dataset:
1674
+ name: MTEB MindSmallReranking
1675
+ type: mteb/mind_small
1676
+ config: default
1677
+ split: test
1678
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1679
+ metrics:
1680
+ - type: map
1681
+ value: 30.601827413968596
1682
+ - type: mrr
1683
+ value: 31.515372019474196
1684
+ - task:
1685
+ type: Retrieval
1686
+ dataset:
1687
+ name: MTEB NFCorpus
1688
+ type: mteb/nfcorpus
1689
+ config: default
1690
+ split: test
1691
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1692
+ metrics:
1693
+ - type: map_at_1
1694
+ value: 5.4559999999999995
1695
+ - type: map_at_10
1696
+ value: 12.039
1697
+ - type: map_at_100
1698
+ value: 14.804999999999998
1699
+ - type: map_at_1000
1700
+ value: 16.081
1701
+ - type: map_at_3
1702
+ value: 8.996
1703
+ - type: map_at_5
1704
+ value: 10.357
1705
+ - type: mrr_at_1
1706
+ value: 45.82
1707
+ - type: mrr_at_10
1708
+ value: 53.583999999999996
1709
+ - type: mrr_at_100
1710
+ value: 54.330999999999996
1711
+ - type: mrr_at_1000
1712
+ value: 54.366
1713
+ - type: mrr_at_3
1714
+ value: 52.166999999999994
1715
+ - type: mrr_at_5
1716
+ value: 52.971999999999994
1717
+ - type: ndcg_at_1
1718
+ value: 44.427
1719
+ - type: ndcg_at_10
1720
+ value: 32.536
1721
+ - type: ndcg_at_100
1722
+ value: 29.410999999999998
1723
+ - type: ndcg_at_1000
1724
+ value: 38.012
1725
+ - type: ndcg_at_3
1726
+ value: 38.674
1727
+ - type: ndcg_at_5
1728
+ value: 36.107
1729
+ - type: precision_at_1
1730
+ value: 45.82
1731
+ - type: precision_at_10
1732
+ value: 23.591
1733
+ - type: precision_at_100
1734
+ value: 7.35
1735
+ - type: precision_at_1000
1736
+ value: 1.9769999999999999
1737
+ - type: precision_at_3
1738
+ value: 36.016999999999996
1739
+ - type: precision_at_5
1740
+ value: 30.959999999999997
1741
+ - type: recall_at_1
1742
+ value: 5.4559999999999995
1743
+ - type: recall_at_10
1744
+ value: 15.387
1745
+ - type: recall_at_100
1746
+ value: 28.754999999999995
1747
+ - type: recall_at_1000
1748
+ value: 59.787
1749
+ - type: recall_at_3
1750
+ value: 10.137
1751
+ - type: recall_at_5
1752
+ value: 12.200999999999999
1753
+ - task:
1754
+ type: Retrieval
1755
+ dataset:
1756
+ name: MTEB NQ
1757
+ type: mteb/nq
1758
+ config: default
1759
+ split: test
1760
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1761
+ metrics:
1762
+ - type: map_at_1
1763
+ value: 32.609
1764
+ - type: map_at_10
1765
+ value: 48.522
1766
+ - type: map_at_100
1767
+ value: 49.468
1768
+ - type: map_at_1000
1769
+ value: 49.497
1770
+ - type: map_at_3
1771
+ value: 44.327
1772
+ - type: map_at_5
1773
+ value: 46.937
1774
+ - type: mrr_at_1
1775
+ value: 36.616
1776
+ - type: mrr_at_10
1777
+ value: 50.943000000000005
1778
+ - type: mrr_at_100
1779
+ value: 51.626000000000005
1780
+ - type: mrr_at_1000
1781
+ value: 51.647
1782
+ - type: mrr_at_3
1783
+ value: 47.532999999999994
1784
+ - type: mrr_at_5
1785
+ value: 49.714000000000006
1786
+ - type: ndcg_at_1
1787
+ value: 36.586999999999996
1788
+ - type: ndcg_at_10
1789
+ value: 56.19499999999999
1790
+ - type: ndcg_at_100
1791
+ value: 60.014
1792
+ - type: ndcg_at_1000
1793
+ value: 60.707
1794
+ - type: ndcg_at_3
1795
+ value: 48.486000000000004
1796
+ - type: ndcg_at_5
1797
+ value: 52.791999999999994
1798
+ - type: precision_at_1
1799
+ value: 36.586999999999996
1800
+ - type: precision_at_10
1801
+ value: 9.139999999999999
1802
+ - type: precision_at_100
1803
+ value: 1.129
1804
+ - type: precision_at_1000
1805
+ value: 0.11900000000000001
1806
+ - type: precision_at_3
1807
+ value: 22.171
1808
+ - type: precision_at_5
1809
+ value: 15.787999999999998
1810
+ - type: recall_at_1
1811
+ value: 32.609
1812
+ - type: recall_at_10
1813
+ value: 77.011
1814
+ - type: recall_at_100
1815
+ value: 93.202
1816
+ - type: recall_at_1000
1817
+ value: 98.344
1818
+ - type: recall_at_3
1819
+ value: 57.286
1820
+ - type: recall_at_5
1821
+ value: 67.181
1822
+ - task:
1823
+ type: Classification
1824
+ dataset:
1825
+ name: MTEB NewsClassification
1826
+ type: ag_news
1827
+ config: default
1828
+ split: test
1829
+ revision: eb185aade064a813bc0b7f42de02595523103ca4
1830
+ metrics:
1831
+ - type: accuracy
1832
+ value: 77.4421052631579
1833
+ - type: f1
1834
+ value: 77.23976860913628
1835
+ - task:
1836
+ type: PairClassification
1837
+ dataset:
1838
+ name: MTEB OpusparcusPC (en)
1839
+ type: GEM/opusparcus
1840
+ config: en
1841
+ split: test
1842
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
1843
+ metrics:
1844
+ - type: cos_sim_accuracy
1845
+ value: 99.89816700610999
1846
+ - type: cos_sim_ap
1847
+ value: 100
1848
+ - type: cos_sim_f1
1849
+ value: 99.9490575649516
1850
+ - type: cos_sim_precision
1851
+ value: 100
1852
+ - type: cos_sim_recall
1853
+ value: 99.89816700610999
1854
+ - type: dot_accuracy
1855
+ value: 99.89816700610999
1856
+ - type: dot_ap
1857
+ value: 100
1858
+ - type: dot_f1
1859
+ value: 99.9490575649516
1860
+ - type: dot_precision
1861
+ value: 100
1862
+ - type: dot_recall
1863
+ value: 99.89816700610999
1864
+ - type: euclidean_accuracy
1865
+ value: 99.89816700610999
1866
+ - type: euclidean_ap
1867
+ value: 100
1868
+ - type: euclidean_f1
1869
+ value: 99.9490575649516
1870
+ - type: euclidean_precision
1871
+ value: 100
1872
+ - type: euclidean_recall
1873
+ value: 99.89816700610999
1874
+ - type: manhattan_accuracy
1875
+ value: 99.89816700610999
1876
+ - type: manhattan_ap
1877
+ value: 100
1878
+ - type: manhattan_f1
1879
+ value: 99.9490575649516
1880
+ - type: manhattan_precision
1881
+ value: 100
1882
+ - type: manhattan_recall
1883
+ value: 99.89816700610999
1884
+ - type: max_accuracy
1885
+ value: 99.89816700610999
1886
+ - type: max_ap
1887
+ value: 100
1888
+ - type: max_f1
1889
+ value: 99.9490575649516
1890
+ - task:
1891
+ type: PairClassification
1892
+ dataset:
1893
+ name: MTEB PawsX (en)
1894
+ type: paws-x
1895
+ config: en
1896
+ split: test
1897
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
1898
+ metrics:
1899
+ - type: cos_sim_accuracy
1900
+ value: 61.25000000000001
1901
+ - type: cos_sim_ap
1902
+ value: 59.23166242799505
1903
+ - type: cos_sim_f1
1904
+ value: 62.53016201309893
1905
+ - type: cos_sim_precision
1906
+ value: 45.486459378134406
1907
+ - type: cos_sim_recall
1908
+ value: 100
1909
+ - type: dot_accuracy
1910
+ value: 61.25000000000001
1911
+ - type: dot_ap
1912
+ value: 59.23109306756652
1913
+ - type: dot_f1
1914
+ value: 62.53016201309893
1915
+ - type: dot_precision
1916
+ value: 45.486459378134406
1917
+ - type: dot_recall
1918
+ value: 100
1919
+ - type: euclidean_accuracy
1920
+ value: 61.25000000000001
1921
+ - type: euclidean_ap
1922
+ value: 59.23166242799505
1923
+ - type: euclidean_f1
1924
+ value: 62.53016201309893
1925
+ - type: euclidean_precision
1926
+ value: 45.486459378134406
1927
+ - type: euclidean_recall
1928
+ value: 100
1929
+ - type: manhattan_accuracy
1930
+ value: 61.25000000000001
1931
+ - type: manhattan_ap
1932
+ value: 59.23015114712089
1933
+ - type: manhattan_f1
1934
+ value: 62.50861474844934
1935
+ - type: manhattan_precision
1936
+ value: 45.46365914786967
1937
+ - type: manhattan_recall
1938
+ value: 100
1939
+ - type: max_accuracy
1940
+ value: 61.25000000000001
1941
+ - type: max_ap
1942
+ value: 59.23166242799505
1943
+ - type: max_f1
1944
+ value: 62.53016201309893
1945
+ - task:
1946
+ type: Retrieval
1947
+ dataset:
1948
+ name: MTEB QuoraRetrieval
1949
+ type: mteb/quora
1950
+ config: default
1951
+ split: test
1952
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1953
+ metrics:
1954
+ - type: map_at_1
1955
+ value: 69.919
1956
+ - type: map_at_10
1957
+ value: 83.636
1958
+ - type: map_at_100
1959
+ value: 84.27
1960
+ - type: map_at_1000
1961
+ value: 84.289
1962
+ - type: map_at_3
1963
+ value: 80.744
1964
+ - type: map_at_5
1965
+ value: 82.509
1966
+ - type: mrr_at_1
1967
+ value: 80.52
1968
+ - type: mrr_at_10
1969
+ value: 86.751
1970
+ - type: mrr_at_100
1971
+ value: 86.875
1972
+ - type: mrr_at_1000
1973
+ value: 86.876
1974
+ - type: mrr_at_3
1975
+ value: 85.798
1976
+ - type: mrr_at_5
1977
+ value: 86.414
1978
+ - type: ndcg_at_1
1979
+ value: 80.53
1980
+ - type: ndcg_at_10
1981
+ value: 87.465
1982
+ - type: ndcg_at_100
1983
+ value: 88.762
1984
+ - type: ndcg_at_1000
1985
+ value: 88.90599999999999
1986
+ - type: ndcg_at_3
1987
+ value: 84.634
1988
+ - type: ndcg_at_5
1989
+ value: 86.09400000000001
1990
+ - type: precision_at_1
1991
+ value: 80.53
1992
+ - type: precision_at_10
1993
+ value: 13.263
1994
+ - type: precision_at_100
1995
+ value: 1.517
1996
+ - type: precision_at_1000
1997
+ value: 0.156
1998
+ - type: precision_at_3
1999
+ value: 36.973
2000
+ - type: precision_at_5
2001
+ value: 24.25
2002
+ - type: recall_at_1
2003
+ value: 69.919
2004
+ - type: recall_at_10
2005
+ value: 94.742
2006
+ - type: recall_at_100
2007
+ value: 99.221
2008
+ - type: recall_at_1000
2009
+ value: 99.917
2010
+ - type: recall_at_3
2011
+ value: 86.506
2012
+ - type: recall_at_5
2013
+ value: 90.736
2014
+ - task:
2015
+ type: Clustering
2016
+ dataset:
2017
+ name: MTEB RedditClustering
2018
+ type: mteb/reddit-clustering
2019
+ config: default
2020
+ split: test
2021
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2022
+ metrics:
2023
+ - type: v_measure
2024
+ value: 50.47309147963901
2025
+ - task:
2026
+ type: Clustering
2027
+ dataset:
2028
+ name: MTEB RedditClusteringP2P
2029
+ type: mteb/reddit-clustering-p2p
2030
+ config: default
2031
+ split: test
2032
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
2033
+ metrics:
2034
+ - type: v_measure
2035
+ value: 60.53779561923047
2036
+ - task:
2037
+ type: Retrieval
2038
+ dataset:
2039
+ name: MTEB SCIDOCS
2040
+ type: mteb/scidocs
2041
+ config: default
2042
+ split: test
2043
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
2044
+ metrics:
2045
+ - type: map_at_1
2046
+ value: 4.843
2047
+ - type: map_at_10
2048
+ value: 11.664
2049
+ - type: map_at_100
2050
+ value: 13.499
2051
+ - type: map_at_1000
2052
+ value: 13.771
2053
+ - type: map_at_3
2054
+ value: 8.602
2055
+ - type: map_at_5
2056
+ value: 10.164
2057
+ - type: mrr_at_1
2058
+ value: 23.9
2059
+ - type: mrr_at_10
2060
+ value: 34.018
2061
+ - type: mrr_at_100
2062
+ value: 35.099000000000004
2063
+ - type: mrr_at_1000
2064
+ value: 35.162
2065
+ - type: mrr_at_3
2066
+ value: 31.233
2067
+ - type: mrr_at_5
2068
+ value: 32.793
2069
+ - type: ndcg_at_1
2070
+ value: 23.9
2071
+ - type: ndcg_at_10
2072
+ value: 19.42
2073
+ - type: ndcg_at_100
2074
+ value: 26.715
2075
+ - type: ndcg_at_1000
2076
+ value: 31.776
2077
+ - type: ndcg_at_3
2078
+ value: 19.165
2079
+ - type: ndcg_at_5
2080
+ value: 16.46
2081
+ - type: precision_at_1
2082
+ value: 23.9
2083
+ - type: precision_at_10
2084
+ value: 9.82
2085
+ - type: precision_at_100
2086
+ value: 2.0340000000000003
2087
+ - type: precision_at_1000
2088
+ value: 0.325
2089
+ - type: precision_at_3
2090
+ value: 17.767
2091
+ - type: precision_at_5
2092
+ value: 14.24
2093
+ - type: recall_at_1
2094
+ value: 4.843
2095
+ - type: recall_at_10
2096
+ value: 19.895
2097
+ - type: recall_at_100
2098
+ value: 41.302
2099
+ - type: recall_at_1000
2100
+ value: 66.077
2101
+ - type: recall_at_3
2102
+ value: 10.803
2103
+ - type: recall_at_5
2104
+ value: 14.418000000000001
2105
+ - task:
2106
+ type: STS
2107
+ dataset:
2108
+ name: MTEB SICK-R
2109
+ type: mteb/sickr-sts
2110
+ config: default
2111
+ split: test
2112
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
2113
+ metrics:
2114
+ - type: cos_sim_pearson
2115
+ value: 76.94120735638143
2116
+ - type: cos_sim_spearman
2117
+ value: 69.66114097154585
2118
+ - type: euclidean_pearson
2119
+ value: 73.11242035696426
2120
+ - type: euclidean_spearman
2121
+ value: 69.66114271982464
2122
+ - type: manhattan_pearson
2123
+ value: 73.07993034858605
2124
+ - type: manhattan_spearman
2125
+ value: 69.6457893357314
2126
+ - task:
2127
+ type: STS
2128
+ dataset:
2129
+ name: MTEB STS12
2130
+ type: mteb/sts12-sts
2131
+ config: default
2132
+ split: test
2133
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2134
+ metrics:
2135
+ - type: cos_sim_pearson
2136
+ value: 74.72893353272778
2137
+ - type: cos_sim_spearman
2138
+ value: 68.78540928870311
2139
+ - type: euclidean_pearson
2140
+ value: 71.13907970605574
2141
+ - type: euclidean_spearman
2142
+ value: 68.78540928870311
2143
+ - type: manhattan_pearson
2144
+ value: 71.02709590547859
2145
+ - type: manhattan_spearman
2146
+ value: 68.71685896660532
2147
+ - task:
2148
+ type: STS
2149
+ dataset:
2150
+ name: MTEB STS13
2151
+ type: mteb/sts13-sts
2152
+ config: default
2153
+ split: test
2154
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2155
+ metrics:
2156
+ - type: cos_sim_pearson
2157
+ value: 79.30142652684971
2158
+ - type: cos_sim_spearman
2159
+ value: 79.61879435615303
2160
+ - type: euclidean_pearson
2161
+ value: 79.08730432883864
2162
+ - type: euclidean_spearman
2163
+ value: 79.61879435615303
2164
+ - type: manhattan_pearson
2165
+ value: 78.99621073156322
2166
+ - type: manhattan_spearman
2167
+ value: 79.53806342308278
2168
+ - task:
2169
+ type: STS
2170
+ dataset:
2171
+ name: MTEB STS14
2172
+ type: mteb/sts14-sts
2173
+ config: default
2174
+ split: test
2175
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2176
+ metrics:
2177
+ - type: cos_sim_pearson
2178
+ value: 78.99585233036139
2179
+ - type: cos_sim_spearman
2180
+ value: 75.57574519760183
2181
+ - type: euclidean_pearson
2182
+ value: 77.33835658613162
2183
+ - type: euclidean_spearman
2184
+ value: 75.57573873503655
2185
+ - type: manhattan_pearson
2186
+ value: 77.12175044789362
2187
+ - type: manhattan_spearman
2188
+ value: 75.41293517634836
2189
+ - task:
2190
+ type: STS
2191
+ dataset:
2192
+ name: MTEB STS15
2193
+ type: mteb/sts15-sts
2194
+ config: default
2195
+ split: test
2196
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2197
+ metrics:
2198
+ - type: cos_sim_pearson
2199
+ value: 83.9694268253376
2200
+ - type: cos_sim_spearman
2201
+ value: 84.64256921939338
2202
+ - type: euclidean_pearson
2203
+ value: 83.92322958711
2204
+ - type: euclidean_spearman
2205
+ value: 84.64257976421872
2206
+ - type: manhattan_pearson
2207
+ value: 83.93503107204337
2208
+ - type: manhattan_spearman
2209
+ value: 84.63611608236032
2210
+ - task:
2211
+ type: STS
2212
+ dataset:
2213
+ name: MTEB STS16
2214
+ type: mteb/sts16-sts
2215
+ config: default
2216
+ split: test
2217
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2218
+ metrics:
2219
+ - type: cos_sim_pearson
2220
+ value: 81.09041419790253
2221
+ - type: cos_sim_spearman
2222
+ value: 82.39869157752557
2223
+ - type: euclidean_pearson
2224
+ value: 82.04595698258301
2225
+ - type: euclidean_spearman
2226
+ value: 82.39869157752557
2227
+ - type: manhattan_pearson
2228
+ value: 81.97581168053004
2229
+ - type: manhattan_spearman
2230
+ value: 82.34255320578193
2231
+ - task:
2232
+ type: STS
2233
+ dataset:
2234
+ name: MTEB STS17 (en-en)
2235
+ type: mteb/sts17-crosslingual-sts
2236
+ config: en-en
2237
+ split: test
2238
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2239
+ metrics:
2240
+ - type: cos_sim_pearson
2241
+ value: 86.35210432821825
2242
+ - type: cos_sim_spearman
2243
+ value: 86.73200885328937
2244
+ - type: euclidean_pearson
2245
+ value: 86.8527089168747
2246
+ - type: euclidean_spearman
2247
+ value: 86.73200885328937
2248
+ - type: manhattan_pearson
2249
+ value: 86.95671235295457
2250
+ - type: manhattan_spearman
2251
+ value: 86.77713700838545
2252
+ - task:
2253
+ type: STS
2254
+ dataset:
2255
+ name: MTEB STS22 (en)
2256
+ type: mteb/sts22-crosslingual-sts
2257
+ config: en
2258
+ split: test
2259
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2260
+ metrics:
2261
+ - type: cos_sim_pearson
2262
+ value: 68.91106612960657
2263
+ - type: cos_sim_spearman
2264
+ value: 69.48524490302286
2265
+ - type: euclidean_pearson
2266
+ value: 70.51347841618035
2267
+ - type: euclidean_spearman
2268
+ value: 69.48524490302286
2269
+ - type: manhattan_pearson
2270
+ value: 70.31770181334245
2271
+ - type: manhattan_spearman
2272
+ value: 69.12494700138238
2273
+ - task:
2274
+ type: STS
2275
+ dataset:
2276
+ name: MTEB STSBenchmark
2277
+ type: mteb/stsbenchmark-sts
2278
+ config: default
2279
+ split: test
2280
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2281
+ metrics:
2282
+ - type: cos_sim_pearson
2283
+ value: 81.54104342761988
2284
+ - type: cos_sim_spearman
2285
+ value: 81.18789220331483
2286
+ - type: euclidean_pearson
2287
+ value: 81.5895544590969
2288
+ - type: euclidean_spearman
2289
+ value: 81.18789220331483
2290
+ - type: manhattan_pearson
2291
+ value: 81.4738562449809
2292
+ - type: manhattan_spearman
2293
+ value: 81.06565101416024
2294
+ - task:
2295
+ type: STS
2296
+ dataset:
2297
+ name: MTEB STSBenchmarkMultilingualSTS (en)
2298
+ type: PhilipMay/stsb_multi_mt
2299
+ config: en
2300
+ split: test
2301
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
2302
+ metrics:
2303
+ - type: cos_sim_pearson
2304
+ value: 81.54104346197056
2305
+ - type: cos_sim_spearman
2306
+ value: 81.18789220331483
2307
+ - type: euclidean_pearson
2308
+ value: 81.58955451690102
2309
+ - type: euclidean_spearman
2310
+ value: 81.18789220331483
2311
+ - type: manhattan_pearson
2312
+ value: 81.47385630064072
2313
+ - type: manhattan_spearman
2314
+ value: 81.06565101416024
2315
+ - task:
2316
+ type: Reranking
2317
+ dataset:
2318
+ name: MTEB SciDocsRR
2319
+ type: mteb/scidocs-reranking
2320
+ config: default
2321
+ split: test
2322
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2323
+ metrics:
2324
+ - type: map
2325
+ value: 79.34107964300796
2326
+ - type: mrr
2327
+ value: 94.01917889662987
2328
+ - task:
2329
+ type: Retrieval
2330
+ dataset:
2331
+ name: MTEB SciFact
2332
+ type: mteb/scifact
2333
+ config: default
2334
+ split: test
2335
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2336
+ metrics:
2337
+ - type: map_at_1
2338
+ value: 55.928
2339
+ - type: map_at_10
2340
+ value: 65.443
2341
+ - type: map_at_100
2342
+ value: 66.067
2343
+ - type: map_at_1000
2344
+ value: 66.091
2345
+ - type: map_at_3
2346
+ value: 62.629999999999995
2347
+ - type: map_at_5
2348
+ value: 64.35
2349
+ - type: mrr_at_1
2350
+ value: 59
2351
+ - type: mrr_at_10
2352
+ value: 66.845
2353
+ - type: mrr_at_100
2354
+ value: 67.31899999999999
2355
+ - type: mrr_at_1000
2356
+ value: 67.342
2357
+ - type: mrr_at_3
2358
+ value: 64.61099999999999
2359
+ - type: mrr_at_5
2360
+ value: 66.044
2361
+ - type: ndcg_at_1
2362
+ value: 59
2363
+ - type: ndcg_at_10
2364
+ value: 69.921
2365
+ - type: ndcg_at_100
2366
+ value: 72.365
2367
+ - type: ndcg_at_1000
2368
+ value: 73.055
2369
+ - type: ndcg_at_3
2370
+ value: 65.086
2371
+ - type: ndcg_at_5
2372
+ value: 67.62700000000001
2373
+ - type: precision_at_1
2374
+ value: 59
2375
+ - type: precision_at_10
2376
+ value: 9.3
2377
+ - type: precision_at_100
2378
+ value: 1.057
2379
+ - type: precision_at_1000
2380
+ value: 0.11100000000000002
2381
+ - type: precision_at_3
2382
+ value: 25.333
2383
+ - type: precision_at_5
2384
+ value: 16.866999999999997
2385
+ - type: recall_at_1
2386
+ value: 55.928
2387
+ - type: recall_at_10
2388
+ value: 82.289
2389
+ - type: recall_at_100
2390
+ value: 92.833
2391
+ - type: recall_at_1000
2392
+ value: 98.333
2393
+ - type: recall_at_3
2394
+ value: 69.172
2395
+ - type: recall_at_5
2396
+ value: 75.628
2397
+ - task:
2398
+ type: PairClassification
2399
+ dataset:
2400
+ name: MTEB SprintDuplicateQuestions
2401
+ type: mteb/sprintduplicatequestions-pairclassification
2402
+ config: default
2403
+ split: test
2404
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2405
+ metrics:
2406
+ - type: cos_sim_accuracy
2407
+ value: 99.81881188118813
2408
+ - type: cos_sim_ap
2409
+ value: 95.2776439040401
2410
+ - type: cos_sim_f1
2411
+ value: 90.74355083459787
2412
+ - type: cos_sim_precision
2413
+ value: 91.81166837256909
2414
+ - type: cos_sim_recall
2415
+ value: 89.7
2416
+ - type: dot_accuracy
2417
+ value: 99.81881188118813
2418
+ - type: dot_ap
2419
+ value: 95.27764092100406
2420
+ - type: dot_f1
2421
+ value: 90.74355083459787
2422
+ - type: dot_precision
2423
+ value: 91.81166837256909
2424
+ - type: dot_recall
2425
+ value: 89.7
2426
+ - type: euclidean_accuracy
2427
+ value: 99.81881188118813
2428
+ - type: euclidean_ap
2429
+ value: 95.27764091101388
2430
+ - type: euclidean_f1
2431
+ value: 90.74355083459787
2432
+ - type: euclidean_precision
2433
+ value: 91.81166837256909
2434
+ - type: euclidean_recall
2435
+ value: 89.7
2436
+ - type: manhattan_accuracy
2437
+ value: 99.82079207920792
2438
+ - type: manhattan_ap
2439
+ value: 95.25081634689418
2440
+ - type: manhattan_f1
2441
+ value: 90.75114971895759
2442
+ - type: manhattan_precision
2443
+ value: 92.78996865203762
2444
+ - type: manhattan_recall
2445
+ value: 88.8
2446
+ - type: max_accuracy
2447
+ value: 99.82079207920792
2448
+ - type: max_ap
2449
+ value: 95.2776439040401
2450
+ - type: max_f1
2451
+ value: 90.75114971895759
2452
+ - task:
2453
+ type: Clustering
2454
+ dataset:
2455
+ name: MTEB StackExchangeClustering
2456
+ type: mteb/stackexchange-clustering
2457
+ config: default
2458
+ split: test
2459
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2460
+ metrics:
2461
+ - type: v_measure
2462
+ value: 60.69855369728728
2463
+ - task:
2464
+ type: Clustering
2465
+ dataset:
2466
+ name: MTEB StackExchangeClusteringP2P
2467
+ type: mteb/stackexchange-clustering-p2p
2468
+ config: default
2469
+ split: test
2470
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2471
+ metrics:
2472
+ - type: v_measure
2473
+ value: 33.98191834367251
2474
+ - task:
2475
+ type: Reranking
2476
+ dataset:
2477
+ name: MTEB StackOverflowDupQuestions
2478
+ type: mteb/stackoverflowdupquestions-reranking
2479
+ config: default
2480
+ split: test
2481
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2482
+ metrics:
2483
+ - type: map
2484
+ value: 50.156163330429614
2485
+ - type: mrr
2486
+ value: 50.90145148968678
2487
+ - task:
2488
+ type: Summarization
2489
+ dataset:
2490
+ name: MTEB SummEval
2491
+ type: mteb/summeval
2492
+ config: default
2493
+ split: test
2494
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2495
+ metrics:
2496
+ - type: cos_sim_pearson
2497
+ value: 31.16938079808134
2498
+ - type: cos_sim_spearman
2499
+ value: 31.74655874538245
2500
+ - type: dot_pearson
2501
+ value: 31.169380299671705
2502
+ - type: dot_spearman
2503
+ value: 31.74655874538245
2504
+ - task:
2505
+ type: Retrieval
2506
+ dataset:
2507
+ name: MTEB TRECCOVID
2508
+ type: mteb/trec-covid
2509
+ config: default
2510
+ split: test
2511
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2512
+ metrics:
2513
+ - type: map_at_1
2514
+ value: 0.252
2515
+ - type: map_at_10
2516
+ value: 2.009
2517
+ - type: map_at_100
2518
+ value: 11.611
2519
+ - type: map_at_1000
2520
+ value: 27.811999999999998
2521
+ - type: map_at_3
2522
+ value: 0.685
2523
+ - type: map_at_5
2524
+ value: 1.08
2525
+ - type: mrr_at_1
2526
+ value: 94
2527
+ - type: mrr_at_10
2528
+ value: 97
2529
+ - type: mrr_at_100
2530
+ value: 97
2531
+ - type: mrr_at_1000
2532
+ value: 97
2533
+ - type: mrr_at_3
2534
+ value: 97
2535
+ - type: mrr_at_5
2536
+ value: 97
2537
+ - type: ndcg_at_1
2538
+ value: 88
2539
+ - type: ndcg_at_10
2540
+ value: 81.388
2541
+ - type: ndcg_at_100
2542
+ value: 60.629
2543
+ - type: ndcg_at_1000
2544
+ value: 52.38
2545
+ - type: ndcg_at_3
2546
+ value: 86.827
2547
+ - type: ndcg_at_5
2548
+ value: 84.597
2549
+ - type: precision_at_1
2550
+ value: 94
2551
+ - type: precision_at_10
2552
+ value: 85.8
2553
+ - type: precision_at_100
2554
+ value: 62.419999999999995
2555
+ - type: precision_at_1000
2556
+ value: 23.31
2557
+ - type: precision_at_3
2558
+ value: 90.667
2559
+ - type: precision_at_5
2560
+ value: 88.4
2561
+ - type: recall_at_1
2562
+ value: 0.252
2563
+ - type: recall_at_10
2564
+ value: 2.164
2565
+ - type: recall_at_100
2566
+ value: 14.613999999999999
2567
+ - type: recall_at_1000
2568
+ value: 48.730000000000004
2569
+ - type: recall_at_3
2570
+ value: 0.7020000000000001
2571
+ - type: recall_at_5
2572
+ value: 1.122
2573
+ - task:
2574
+ type: Retrieval
2575
+ dataset:
2576
+ name: MTEB Touche2020
2577
+ type: mteb/touche2020
2578
+ config: default
2579
+ split: test
2580
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2581
+ metrics:
2582
+ - type: map_at_1
2583
+ value: 3.476
2584
+ - type: map_at_10
2585
+ value: 13.442000000000002
2586
+ - type: map_at_100
2587
+ value: 20.618
2588
+ - type: map_at_1000
2589
+ value: 22.175
2590
+ - type: map_at_3
2591
+ value: 6.968000000000001
2592
+ - type: map_at_5
2593
+ value: 9.214
2594
+ - type: mrr_at_1
2595
+ value: 44.897999999999996
2596
+ - type: mrr_at_10
2597
+ value: 56.77100000000001
2598
+ - type: mrr_at_100
2599
+ value: 57.226
2600
+ - type: mrr_at_1000
2601
+ value: 57.226
2602
+ - type: mrr_at_3
2603
+ value: 52.381
2604
+ - type: mrr_at_5
2605
+ value: 54.523999999999994
2606
+ - type: ndcg_at_1
2607
+ value: 42.857
2608
+ - type: ndcg_at_10
2609
+ value: 32.507999999999996
2610
+ - type: ndcg_at_100
2611
+ value: 43.614000000000004
2612
+ - type: ndcg_at_1000
2613
+ value: 53.82
2614
+ - type: ndcg_at_3
2615
+ value: 36.818
2616
+ - type: ndcg_at_5
2617
+ value: 33.346
2618
+ - type: precision_at_1
2619
+ value: 44.897999999999996
2620
+ - type: precision_at_10
2621
+ value: 28.571
2622
+ - type: precision_at_100
2623
+ value: 8.652999999999999
2624
+ - type: precision_at_1000
2625
+ value: 1.5709999999999997
2626
+ - type: precision_at_3
2627
+ value: 38.095
2628
+ - type: precision_at_5
2629
+ value: 32.245000000000005
2630
+ - type: recall_at_1
2631
+ value: 3.476
2632
+ - type: recall_at_10
2633
+ value: 20.827
2634
+ - type: recall_at_100
2635
+ value: 53.04299999999999
2636
+ - type: recall_at_1000
2637
+ value: 84.221
2638
+ - type: recall_at_3
2639
+ value: 8.200000000000001
2640
+ - type: recall_at_5
2641
+ value: 11.651
2642
+ - task:
2643
+ type: Classification
2644
+ dataset:
2645
+ name: MTEB ToxicConversationsClassification
2646
+ type: mteb/toxic_conversations_50k
2647
+ config: default
2648
+ split: test
2649
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2650
+ metrics:
2651
+ - type: accuracy
2652
+ value: 61.96360000000001
2653
+ - type: ap
2654
+ value: 11.256160324436445
2655
+ - type: f1
2656
+ value: 48.07712827691349
2657
+ - task:
2658
+ type: Classification
2659
+ dataset:
2660
+ name: MTEB TweetSentimentExtractionClassification
2661
+ type: mteb/tweet_sentiment_extraction
2662
+ config: default
2663
+ split: test
2664
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2665
+ metrics:
2666
+ - type: accuracy
2667
+ value: 58.90492359932088
2668
+ - type: f1
2669
+ value: 59.12542417513503
2670
+ - task:
2671
+ type: Clustering
2672
+ dataset:
2673
+ name: MTEB TwentyNewsgroupsClustering
2674
+ type: mteb/twentynewsgroups-clustering
2675
+ config: default
2676
+ split: test
2677
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2678
+ metrics:
2679
+ - type: v_measure
2680
+ value: 38.284935353315355
2681
+ - task:
2682
+ type: PairClassification
2683
+ dataset:
2684
+ name: MTEB TwitterSemEval2015
2685
+ type: mteb/twittersemeval2015-pairclassification
2686
+ config: default
2687
+ split: test
2688
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2689
+ metrics:
2690
+ - type: cos_sim_accuracy
2691
+ value: 83.4714192048638
2692
+ - type: cos_sim_ap
2693
+ value: 65.77588263185375
2694
+ - type: cos_sim_f1
2695
+ value: 62.459508098380326
2696
+ - type: cos_sim_precision
2697
+ value: 57.27172717271727
2698
+ - type: cos_sim_recall
2699
+ value: 68.68073878627968
2700
+ - type: dot_accuracy
2701
+ value: 83.4714192048638
2702
+ - type: dot_ap
2703
+ value: 65.77588818364636
2704
+ - type: dot_f1
2705
+ value: 62.459508098380326
2706
+ - type: dot_precision
2707
+ value: 57.27172717271727
2708
+ - type: dot_recall
2709
+ value: 68.68073878627968
2710
+ - type: euclidean_accuracy
2711
+ value: 83.4714192048638
2712
+ - type: euclidean_ap
2713
+ value: 65.77587693431595
2714
+ - type: euclidean_f1
2715
+ value: 62.459508098380326
2716
+ - type: euclidean_precision
2717
+ value: 57.27172717271727
2718
+ - type: euclidean_recall
2719
+ value: 68.68073878627968
2720
+ - type: manhattan_accuracy
2721
+ value: 83.47737974608094
2722
+ - type: manhattan_ap
2723
+ value: 65.65957745829654
2724
+ - type: manhattan_f1
2725
+ value: 62.22760290556902
2726
+ - type: manhattan_precision
2727
+ value: 57.494407158836694
2728
+ - type: manhattan_recall
2729
+ value: 67.81002638522428
2730
+ - type: max_accuracy
2731
+ value: 83.47737974608094
2732
+ - type: max_ap
2733
+ value: 65.77588818364636
2734
+ - type: max_f1
2735
+ value: 62.459508098380326
2736
+ - task:
2737
+ type: PairClassification
2738
+ dataset:
2739
+ name: MTEB TwitterURLCorpus
2740
+ type: mteb/twitterurlcorpus-pairclassification
2741
+ config: default
2742
+ split: test
2743
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2744
+ metrics:
2745
+ - type: cos_sim_accuracy
2746
+ value: 88.64244964489463
2747
+ - type: cos_sim_ap
2748
+ value: 85.154122301394
2749
+ - type: cos_sim_f1
2750
+ value: 77.45617911327146
2751
+ - type: cos_sim_precision
2752
+ value: 74.23066064370413
2753
+ - type: cos_sim_recall
2754
+ value: 80.97474591931014
2755
+ - type: dot_accuracy
2756
+ value: 88.64244964489463
2757
+ - type: dot_ap
2758
+ value: 85.15411965587543
2759
+ - type: dot_f1
2760
+ value: 77.45617911327146
2761
+ - type: dot_precision
2762
+ value: 74.23066064370413
2763
+ - type: dot_recall
2764
+ value: 80.97474591931014
2765
+ - type: euclidean_accuracy
2766
+ value: 88.64244964489463
2767
+ - type: euclidean_ap
2768
+ value: 85.15414684113986
2769
+ - type: euclidean_f1
2770
+ value: 77.45617911327146
2771
+ - type: euclidean_precision
2772
+ value: 74.23066064370413
2773
+ - type: euclidean_recall
2774
+ value: 80.97474591931014
2775
+ - type: manhattan_accuracy
2776
+ value: 88.57841425078588
2777
+ - type: manhattan_ap
2778
+ value: 85.12472268567576
2779
+ - type: manhattan_f1
2780
+ value: 77.39497339937627
2781
+ - type: manhattan_precision
2782
+ value: 73.92584285413892
2783
+ - type: manhattan_recall
2784
+ value: 81.20572836464429
2785
+ - type: max_accuracy
2786
+ value: 88.64244964489463
2787
+ - type: max_ap
2788
+ value: 85.15414684113986
2789
+ - type: max_f1
2790
+ value: 77.45617911327146
2791
+ - task:
2792
+ type: Clustering
2793
+ dataset:
2794
+ name: MTEB WikiCitiesClustering
2795
+ type: jinaai/cities_wiki_clustering
2796
+ config: default
2797
+ split: test
2798
+ revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
2799
+ metrics:
2800
+ - type: v_measure
2801
+ value: 79.58576208710117
2802
+ ---
2803
+
2804
+ # yishan-wang/snowflake-arctic-embed-s-Q8_0-GGUF
2805
+ This model was converted to GGUF format from [`Snowflake/snowflake-arctic-embed-s`](https://huggingface.co/Snowflake/snowflake-arctic-embed-s) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2806
+ Refer to the [original model card](https://huggingface.co/Snowflake/snowflake-arctic-embed-s) for more details on the model.
2807
+
2808
+ ## Use with llama.cpp
2809
+ Install llama.cpp through brew (works on Mac and Linux)
2810
+
2811
+ ```bash
2812
+ brew install llama.cpp
2813
+
2814
+ ```
2815
+ Invoke the llama.cpp server or the CLI.
2816
+
2817
+ ### CLI:
2818
+ ```bash
2819
+ llama-cli --hf-repo yishan-wang/snowflake-arctic-embed-s-Q8_0-GGUF --hf-file snowflake-arctic-embed-s-q8_0.gguf -p "The meaning to life and the universe is"
2820
+ ```
2821
+
2822
+ ### Server:
2823
+ ```bash
2824
+ llama-server --hf-repo yishan-wang/snowflake-arctic-embed-s-Q8_0-GGUF --hf-file snowflake-arctic-embed-s-q8_0.gguf -c 2048
2825
+ ```
2826
+
2827
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2828
+
2829
+ Step 1: Clone llama.cpp from GitHub.
2830
+ ```
2831
+ git clone https://github.com/ggerganov/llama.cpp
2832
+ ```
2833
+
2834
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2835
+ ```
2836
+ cd llama.cpp && LLAMA_CURL=1 make
2837
+ ```
2838
+
2839
+ Step 3: Run inference through the main binary.
2840
+ ```
2841
+ ./llama-cli --hf-repo yishan-wang/snowflake-arctic-embed-s-Q8_0-GGUF --hf-file snowflake-arctic-embed-s-q8_0.gguf -p "The meaning to life and the universe is"
2842
+ ```
2843
+ or
2844
+ ```
2845
+ ./llama-server --hf-repo yishan-wang/snowflake-arctic-embed-s-Q8_0-GGUF --hf-file snowflake-arctic-embed-s-q8_0.gguf -c 2048
2846
+ ```