yizhangliu commited on
Commit
72c6d4c
1 Parent(s): ff273e1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 280.68 +/- 14.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe215d86c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe215d86cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe215d86d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe215d86dd0>", "_build": "<function ActorCriticPolicy._build at 0x7fe215d86e60>", "forward": "<function ActorCriticPolicy.forward at 0x7fe215d86ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe215d86f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe215d8e050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe215d8e0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe215d8e170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe215d8e200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe215dd4ae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668915666137927945, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA7er3J4Ac/C19pvTpbub4LPri9XbMpvQAAAAAAAAAAOtJtvlNsEj+27GS6CpDFvtZ6Nr44GgU9AAAAAAAAAABmyaG8WQenP1BWN77hoRG/BZxgvLpacb0AAAAAAAAAAJrpfbxcE2u6NYTjsubm1LAc8My6Ksp9MwAAgD8AAIA/jZOKPTg4AT8fWJC+x+THvgXy47048qa9AAAAAAAAAAA9unS+Ow6YPvEVwD5SBIO+sz2gvZ69Rz4AAAAAAAAAAGZ4u7w99Gc+Kb+lPMIhsb6usmS9FNObugAAAAAAAAAA2nzTPRiZhz8tkxg+LNi8vn2LNj5D3oO9AAAAAAAAAABmzpO88/+yP5fAGL8pPli+Bu9vPADbbD0AAAAAAAAAAGNofb7I2o4+6jFUPspjkb5na8292yvNPQAAAAAAAAAAMyuKuxx9F7xNoVW9e4uEPVgzIDwyayG8AACAPwAAgD9NRUI9JWOoP7pXEj+6FhW/ta0MvImKoj0AAAAAAAAAABr0pz7KKnk/99hCvUBizb5omJg++YcIvgAAAAAAAAAAM3rpvHuylrox0pi11p32sFvtjbq7w6w0AACAPwAAgD9m1Co89vg6vELqPD22yD49my2qvebkNbwAAIA/AACAP/tyib5MDsI+tlWmPvd7mL6FeQ++LvOFPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+MQ6Vf4McECUhpRSlIwBbJRL4IwBdJRHQKBLnN0NjLB1fZQoaAZoCWgPQwiRuMfSB91sQJSGlFKUaBVNBwFoFkdAoEwZ1PnB+HV9lChoBmgJaA9DCPAZidBIAnBAlIaUUpRoFU0BAWgWR0CgTBvYvnKXdX2UKGgGaAloD0MITg6fdKKYbkCUhpRSlGgVTREBaBZHQKBMYKm8/Ux1fZQoaAZoCWgPQwgIrBxaJIVwQJSGlFKUaBVL4GgWR0CgTIiZF5OadX2UKGgGaAloD0MI2exI9Z1YcUCUhpRSlGgVTS0BaBZHQKBMkYAsCkp1fZQoaAZoCWgPQwhrn47HDHdwQJSGlFKUaBVL+2gWR0CgTKGzByjpdX2UKGgGaAloD0MIfbJiuHpNcUCUhpRSlGgVS/BoFkdAoEzff4yoGnV9lChoBmgJaA9DCMnJxK3CFnFAlIaUUpRoFUv3aBZHQKBNImj0tiB1fZQoaAZoCWgPQwg+zjRhu5FxQJSGlFKUaBVL8WgWR0CgTWw1ivxIdX2UKGgGaAloD0MIwJKrWDwocUCUhpRSlGgVTQ8BaBZHQKBNdyVfNRp1fZQoaAZoCWgPQwg0ZhL1AuxyQJSGlFKUaBVNEAFoFkdAoE2MLv1DjXV9lChoBmgJaA9DCP66051nCHBAlIaUUpRoFUvqaBZHQKBNwU21lXl1fZQoaAZoCWgPQwibAwRzdLVyQJSGlFKUaBVL+mgWR0CgTgXNC7btdX2UKGgGaAloD0MIcCcR4R+Tc0CUhpRSlGgVTQkBaBZHQKBOjvDP4VR1fZQoaAZoCWgPQwibyTfbHBpxQJSGlFKUaBVNJAFoFkdAoE8TPOY6XHV9lChoBmgJaA9DCFPMQdDRy3JAlIaUUpRoFUveaBZHQKBPHSofjjt1fZQoaAZoCWgPQwjrHtlcNW9yQJSGlFKUaBVNGwFoFkdAoE80/MW43HV9lChoBmgJaA9DCAlOfSB5v3BAlIaUUpRoFUv7aBZHQKBPQLcbiqB1fZQoaAZoCWgPQwg57pQOlspxQJSGlFKUaBVL/2gWR0CgT0zVMEiddX2UKGgGaAloD0MIEDy+veuZckCUhpRSlGgVS+toFkdAoE9vukUKzHV9lChoBmgJaA9DCKvN/6uOvm5AlIaUUpRoFUv9aBZHQKBPtmrbQC11fZQoaAZoCWgPQwiqfToeMwlvQJSGlFKUaBVL5mgWR0CgT8ZR0lqrdX2UKGgGaAloD0MI3nNgOQKFcUCUhpRSlGgVTRIBaBZHQKBQBWYnfEZ1fZQoaAZoCWgPQwipvB3hNJNxQJSGlFKUaBVL5mgWR0CgUFnbItDldX2UKGgGaAloD0MIMJ5BQ389cUCUhpRSlGgVS9ZoFkdAoFB6cTakAXV9lChoBmgJaA9DCM41zNB4I25AlIaUUpRoFU0RAWgWR0CgUJPM0P6LdX2UKGgGaAloD0MITz49tuX/b0CUhpRSlGgVTQEBaBZHQKBQ1a11GLF1fZQoaAZoCWgPQwik42pkVxN0QJSGlFKUaBVNDQFoFkdAoFDpVKf4AXV9lChoBmgJaA9DCDnwarnzYnBAlIaUUpRoFUv2aBZHQKBRMSxJNCZ1fZQoaAZoCWgPQwjNzMzMzLhMQJSGlFKUaBVLuGgWR0CgUYPK+zt1dX2UKGgGaAloD0MINIP4wA5ycUCUhpRSlGgVS+5oFkdAoFGfl8w6AHV9lChoBmgJaA9DCK2GxD1Wo3BAlIaUUpRoFUvVaBZHQKBRxw++ueV1fZQoaAZoCWgPQwgAHHv2HO5wQJSGlFKUaBVL82gWR0CgW/e+VTrFdX2UKGgGaAloD0MIGckeoaagcECUhpRSlGgVS9hoFkdAoFwX6uW8iHV9lChoBmgJaA9DCKNXA5QG0nFAlIaUUpRoFUvuaBZHQKBcHML4N7V1fZQoaAZoCWgPQwjJPV3dsRJxQJSGlFKUaBVNDQFoFkdAoFwxY5ksjHV9lChoBmgJaA9DCFDfMqcLXHBAlIaUUpRoFU0JAWgWR0CgXFI/qxC6dX2UKGgGaAloD0MICACOPbvBckCUhpRSlGgVS/VoFkdAoFyGT9sJpnV9lChoBmgJaA9DCK1OzlDcyW1AlIaUUpRoFUvhaBZHQKBciyon8bd1fZQoaAZoCWgPQwjaOjjYG+tvQJSGlFKUaBVL6WgWR0CgXPBGYrrgdX2UKGgGaAloD0MIsWt7uyU7cUCUhpRSlGgVS+RoFkdAoF0AMDwH7nV9lChoBmgJaA9DCC9SKAtfmHFAlIaUUpRoFUvdaBZHQKBdSDJU5uJ1fZQoaAZoCWgPQwgPf03WaAJwQJSGlFKUaBVL9WgWR0CgXYEBS1mbdX2UKGgGaAloD0MI0EaumxJ+ckCUhpRSlGgVTRwBaBZHQKBdwUQCjlB1fZQoaAZoCWgPQwimtz8XDRpyQJSGlFKUaBVNCAFoFkdAoF4X5nDiwXV9lChoBmgJaA9DCIRnQpMEnnFAlIaUUpRoFUvwaBZHQKBeHxIatLd1fZQoaAZoCWgPQwiVZvM4jMdvQJSGlFKUaBVL9WgWR0CgXknbAUL2dX2UKGgGaAloD0MI96sA320EcUCUhpRSlGgVS/JoFkdAoF5lTP0I1XV9lChoBmgJaA9DCB78xAH0EnNAlIaUUpRoFUvTaBZHQKBepXV9Wp91fZQoaAZoCWgPQwhhcTjz60BzQJSGlFKUaBVL52gWR0CgXsP7el9CdX2UKGgGaAloD0MIlialoBujckCUhpRSlGgVS9hoFkdAoF7GaMJhOXV9lChoBmgJaA9DCNxlv+60NnFAlIaUUpRoFUvyaBZHQKBe99/BnBd1fZQoaAZoCWgPQwiUaTS5GBpzQJSGlFKUaBVL+GgWR0CgXzcFY+0PdX2UKGgGaAloD0MIgeofRPI4cECUhpRSlGgVS/toFkdAoF902R7qp3V9lChoBmgJaA9DCOp3YWs2jHFAlIaUUpRoFUv5aBZHQKBfc6GxlhB1fZQoaAZoCWgPQwgQPpRoySNxQJSGlFKUaBVNEQFoFkdAoGAqXMQmNXV9lChoBmgJaA9DCCScFrxoRnNAlIaUUpRoFU0NAWgWR0CgYC8U/OdHdX2UKGgGaAloD0MIKEnXTH4OcUCUhpRSlGgVTQgBaBZHQKBgcEV32VV1fZQoaAZoCWgPQwigjVw3ZZ5wQJSGlFKUaBVL+WgWR0CgYHxIjGDMdX2UKGgGaAloD0MIk8MnncincUCUhpRSlGgVS+1oFkdAoGCXvF3pwHV9lChoBmgJaA9DCP/nMF8e/3NAlIaUUpRoFUvkaBZHQKBgy3BHkLh1fZQoaAZoCWgPQwgAHlGhOpZzQJSGlFKUaBVL3mgWR0CgYUbqQiiZdX2UKGgGaAloD0MIToBh+bMXcUCUhpRSlGgVS/xoFkdAoGFj5XU6P3V9lChoBmgJaA9DCCUk0jZ+AXJAlIaUUpRoFU0JAWgWR0CgYXK0tyxSdX2UKGgGaAloD0MIe/ZcpiYlbkCUhpRSlGgVS+JoFkdAoGF2Bas6rHV9lChoBmgJaA9DCLk5lQzAXHJAlIaUUpRoFU02AWgWR0CgYczQ/oq1dX2UKGgGaAloD0MIjCsujgrocUCUhpRSlGgVTRMBaBZHQKBiCnndO7B1fZQoaAZoCWgPQwhJhbGFYCNxQJSGlFKUaBVL3WgWR0CgYiDCgsbvdX2UKGgGaAloD0MIbef7qTFOcUCUhpRSlGgVTQMBaBZHQKBiWnTiKix1fZQoaAZoCWgPQwjysFBrGm9wQJSGlFKUaBVNJQFoFkdAoGJ8gr6LwXV9lChoBmgJaA9DCAWJ7e4BdHJAlIaUUpRoFU0MAWgWR0CgYrKjSG8FdX2UKGgGaAloD0MI9Q8iGTL7ckCUhpRSlGgVS/JoFkdAoGMWlyimEXV9lChoBmgJaA9DCF6hD5ZxMXJAlIaUUpRoFUv2aBZHQKBjkZVn27F1fZQoaAZoCWgPQwi9yAT8WltxQJSGlFKUaBVNGgFoFkdAoGOe8wpOOHV9lChoBmgJaA9DCPim6bNDnnFAlIaUUpRoFU0OAWgWR0CgY7tZvDP4dX2UKGgGaAloD0MIYg/tY0ULc0CUhpRSlGgVTQ8BaBZHQKBjyaYu01J1fZQoaAZoCWgPQwgVxhaC3EFyQJSGlFKUaBVL/GgWR0CgY+ECFK02dX2UKGgGaAloD0MITGvT2F4RbUCUhpRSlGgVS+doFkdAoGQbI1cdHXV9lChoBmgJaA9DCPHydK7oX3JAlIaUUpRoFUvuaBZHQKBkTid8Rcx1fZQoaAZoCWgPQwjS30vhwVRxQJSGlFKUaBVL2GgWR0CgZH/6oESvdX2UKGgGaAloD0MI6NoX0MsLckCUhpRSlGgVS/9oFkdAoGSXqX4TK3V9lChoBmgJaA9DCFN2+kHd4G5AlIaUUpRoFU0HAWgWR0CgZLPGIbfhdX2UKGgGaAloD0MIIhrdQezeb0CUhpRSlGgVS+9oFkdAoGUZyhi9ZnV9lChoBmgJaA9DCNTRcTWyj29AlIaUUpRoFUvnaBZHQKBlOj9n9Nx1fZQoaAZoCWgPQwhwXwfOGdFwQJSGlFKUaBVNBgFoFkdAoGVMOVgQYnV9lChoBmgJaA9DCIF8CRWcmHNAlIaUUpRoFUv8aBZHQKBlmjvd/KB1fZQoaAZoCWgPQwg6IXTQJQdyQJSGlFKUaBVL0WgWR0CgZbAZTAFgdX2UKGgGaAloD0MIQWfSpupEUECUhpRSlGgVS91oFkdAoGZdHYpUgnV9lChoBmgJaA9DCLrXSX3Z53FAlIaUUpRoFUv9aBZHQKBmxRqoIfN1fZQoaAZoCWgPQwjCMjZ0M7JwQJSGlFKUaBVL8GgWR0CgZtJbD/EPdX2UKGgGaAloD0MIR1UTRF1ucECUhpRSlGgVS/loFkdAoGbh8IAwPHV9lChoBmgJaA9DCJSl1vuNKklAlIaUUpRoFUu/aBZHQKBnAP3BYV91fZQoaAZoCWgPQwgce/ZcpjRzQJSGlFKUaBVL/GgWR0CgZxPDgqEwdX2UKGgGaAloD0MID3wMVpxbckCUhpRSlGgVS+5oFkdAoGche1KGtnV9lChoBmgJaA9DCD3wMVgxw3NAlIaUUpRoFUvYaBZHQKBnN+iJwbV1fZQoaAZoCWgPQwgAHebLy1JxQJSGlFKUaBVNCwFoFkdAoGelq33HrHV9lChoBmgJaA9DCHZu2owTCXNAlIaUUpRoFU2oAWgWR0CgaAeC9RJmdX2UKGgGaAloD0MI+rmhKTvAcECUhpRSlGgVTQsBaBZHQKBoDLBbfP51fZQoaAZoCWgPQwj1MLQ6uapyQJSGlFKUaBVL72gWR0CgaB5ZbILgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e25589e798da601e0a8389a4802fccfaba4b1374d66f2131ed465fcc1fffde8b
3
+ size 147068
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe215d86c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe215d86cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe215d86d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe215d86dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe215d86e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe215d86ef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe215d86f80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe215d8e050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe215d8e0e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe215d8e170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe215d8e200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe215dd4ae0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668915666137927945,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA7er3J4Ac/C19pvTpbub4LPri9XbMpvQAAAAAAAAAAOtJtvlNsEj+27GS6CpDFvtZ6Nr44GgU9AAAAAAAAAABmyaG8WQenP1BWN77hoRG/BZxgvLpacb0AAAAAAAAAAJrpfbxcE2u6NYTjsubm1LAc8My6Ksp9MwAAgD8AAIA/jZOKPTg4AT8fWJC+x+THvgXy47048qa9AAAAAAAAAAA9unS+Ow6YPvEVwD5SBIO+sz2gvZ69Rz4AAAAAAAAAAGZ4u7w99Gc+Kb+lPMIhsb6usmS9FNObugAAAAAAAAAA2nzTPRiZhz8tkxg+LNi8vn2LNj5D3oO9AAAAAAAAAABmzpO88/+yP5fAGL8pPli+Bu9vPADbbD0AAAAAAAAAAGNofb7I2o4+6jFUPspjkb5na8292yvNPQAAAAAAAAAAMyuKuxx9F7xNoVW9e4uEPVgzIDwyayG8AACAPwAAgD9NRUI9JWOoP7pXEj+6FhW/ta0MvImKoj0AAAAAAAAAABr0pz7KKnk/99hCvUBizb5omJg++YcIvgAAAAAAAAAAM3rpvHuylrox0pi11p32sFvtjbq7w6w0AACAPwAAgD9m1Co89vg6vELqPD22yD49my2qvebkNbwAAIA/AACAP/tyib5MDsI+tlWmPvd7mL6FeQ++LvOFPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+MQ6Vf4McECUhpRSlIwBbJRL4IwBdJRHQKBLnN0NjLB1fZQoaAZoCWgPQwiRuMfSB91sQJSGlFKUaBVNBwFoFkdAoEwZ1PnB+HV9lChoBmgJaA9DCPAZidBIAnBAlIaUUpRoFU0BAWgWR0CgTBvYvnKXdX2UKGgGaAloD0MITg6fdKKYbkCUhpRSlGgVTREBaBZHQKBMYKm8/Ux1fZQoaAZoCWgPQwgIrBxaJIVwQJSGlFKUaBVL4GgWR0CgTIiZF5OadX2UKGgGaAloD0MI2exI9Z1YcUCUhpRSlGgVTS0BaBZHQKBMkYAsCkp1fZQoaAZoCWgPQwhrn47HDHdwQJSGlFKUaBVL+2gWR0CgTKGzByjpdX2UKGgGaAloD0MIfbJiuHpNcUCUhpRSlGgVS/BoFkdAoEzff4yoGnV9lChoBmgJaA9DCMnJxK3CFnFAlIaUUpRoFUv3aBZHQKBNImj0tiB1fZQoaAZoCWgPQwg+zjRhu5FxQJSGlFKUaBVL8WgWR0CgTWw1ivxIdX2UKGgGaAloD0MIwJKrWDwocUCUhpRSlGgVTQ8BaBZHQKBNdyVfNRp1fZQoaAZoCWgPQwg0ZhL1AuxyQJSGlFKUaBVNEAFoFkdAoE2MLv1DjXV9lChoBmgJaA9DCP66051nCHBAlIaUUpRoFUvqaBZHQKBNwU21lXl1fZQoaAZoCWgPQwibAwRzdLVyQJSGlFKUaBVL+mgWR0CgTgXNC7btdX2UKGgGaAloD0MIcCcR4R+Tc0CUhpRSlGgVTQkBaBZHQKBOjvDP4VR1fZQoaAZoCWgPQwibyTfbHBpxQJSGlFKUaBVNJAFoFkdAoE8TPOY6XHV9lChoBmgJaA9DCFPMQdDRy3JAlIaUUpRoFUveaBZHQKBPHSofjjt1fZQoaAZoCWgPQwjrHtlcNW9yQJSGlFKUaBVNGwFoFkdAoE80/MW43HV9lChoBmgJaA9DCAlOfSB5v3BAlIaUUpRoFUv7aBZHQKBPQLcbiqB1fZQoaAZoCWgPQwg57pQOlspxQJSGlFKUaBVL/2gWR0CgT0zVMEiddX2UKGgGaAloD0MIEDy+veuZckCUhpRSlGgVS+toFkdAoE9vukUKzHV9lChoBmgJaA9DCKvN/6uOvm5AlIaUUpRoFUv9aBZHQKBPtmrbQC11fZQoaAZoCWgPQwiqfToeMwlvQJSGlFKUaBVL5mgWR0CgT8ZR0lqrdX2UKGgGaAloD0MI3nNgOQKFcUCUhpRSlGgVTRIBaBZHQKBQBWYnfEZ1fZQoaAZoCWgPQwipvB3hNJNxQJSGlFKUaBVL5mgWR0CgUFnbItDldX2UKGgGaAloD0MIMJ5BQ389cUCUhpRSlGgVS9ZoFkdAoFB6cTakAXV9lChoBmgJaA9DCM41zNB4I25AlIaUUpRoFU0RAWgWR0CgUJPM0P6LdX2UKGgGaAloD0MITz49tuX/b0CUhpRSlGgVTQEBaBZHQKBQ1a11GLF1fZQoaAZoCWgPQwik42pkVxN0QJSGlFKUaBVNDQFoFkdAoFDpVKf4AXV9lChoBmgJaA9DCDnwarnzYnBAlIaUUpRoFUv2aBZHQKBRMSxJNCZ1fZQoaAZoCWgPQwjNzMzMzLhMQJSGlFKUaBVLuGgWR0CgUYPK+zt1dX2UKGgGaAloD0MINIP4wA5ycUCUhpRSlGgVS+5oFkdAoFGfl8w6AHV9lChoBmgJaA9DCK2GxD1Wo3BAlIaUUpRoFUvVaBZHQKBRxw++ueV1fZQoaAZoCWgPQwgAHHv2HO5wQJSGlFKUaBVL82gWR0CgW/e+VTrFdX2UKGgGaAloD0MIGckeoaagcECUhpRSlGgVS9hoFkdAoFwX6uW8iHV9lChoBmgJaA9DCKNXA5QG0nFAlIaUUpRoFUvuaBZHQKBcHML4N7V1fZQoaAZoCWgPQwjJPV3dsRJxQJSGlFKUaBVNDQFoFkdAoFwxY5ksjHV9lChoBmgJaA9DCFDfMqcLXHBAlIaUUpRoFU0JAWgWR0CgXFI/qxC6dX2UKGgGaAloD0MICACOPbvBckCUhpRSlGgVS/VoFkdAoFyGT9sJpnV9lChoBmgJaA9DCK1OzlDcyW1AlIaUUpRoFUvhaBZHQKBciyon8bd1fZQoaAZoCWgPQwjaOjjYG+tvQJSGlFKUaBVL6WgWR0CgXPBGYrrgdX2UKGgGaAloD0MIsWt7uyU7cUCUhpRSlGgVS+RoFkdAoF0AMDwH7nV9lChoBmgJaA9DCC9SKAtfmHFAlIaUUpRoFUvdaBZHQKBdSDJU5uJ1fZQoaAZoCWgPQwgPf03WaAJwQJSGlFKUaBVL9WgWR0CgXYEBS1mbdX2UKGgGaAloD0MI0EaumxJ+ckCUhpRSlGgVTRwBaBZHQKBdwUQCjlB1fZQoaAZoCWgPQwimtz8XDRpyQJSGlFKUaBVNCAFoFkdAoF4X5nDiwXV9lChoBmgJaA9DCIRnQpMEnnFAlIaUUpRoFUvwaBZHQKBeHxIatLd1fZQoaAZoCWgPQwiVZvM4jMdvQJSGlFKUaBVL9WgWR0CgXknbAUL2dX2UKGgGaAloD0MI96sA320EcUCUhpRSlGgVS/JoFkdAoF5lTP0I1XV9lChoBmgJaA9DCB78xAH0EnNAlIaUUpRoFUvTaBZHQKBepXV9Wp91fZQoaAZoCWgPQwhhcTjz60BzQJSGlFKUaBVL52gWR0CgXsP7el9CdX2UKGgGaAloD0MIlialoBujckCUhpRSlGgVS9hoFkdAoF7GaMJhOXV9lChoBmgJaA9DCNxlv+60NnFAlIaUUpRoFUvyaBZHQKBe99/BnBd1fZQoaAZoCWgPQwiUaTS5GBpzQJSGlFKUaBVL+GgWR0CgXzcFY+0PdX2UKGgGaAloD0MIgeofRPI4cECUhpRSlGgVS/toFkdAoF902R7qp3V9lChoBmgJaA9DCOp3YWs2jHFAlIaUUpRoFUv5aBZHQKBfc6GxlhB1fZQoaAZoCWgPQwgQPpRoySNxQJSGlFKUaBVNEQFoFkdAoGAqXMQmNXV9lChoBmgJaA9DCCScFrxoRnNAlIaUUpRoFU0NAWgWR0CgYC8U/OdHdX2UKGgGaAloD0MIKEnXTH4OcUCUhpRSlGgVTQgBaBZHQKBgcEV32VV1fZQoaAZoCWgPQwigjVw3ZZ5wQJSGlFKUaBVL+WgWR0CgYHxIjGDMdX2UKGgGaAloD0MIk8MnncincUCUhpRSlGgVS+1oFkdAoGCXvF3pwHV9lChoBmgJaA9DCP/nMF8e/3NAlIaUUpRoFUvkaBZHQKBgy3BHkLh1fZQoaAZoCWgPQwgAHlGhOpZzQJSGlFKUaBVL3mgWR0CgYUbqQiiZdX2UKGgGaAloD0MIToBh+bMXcUCUhpRSlGgVS/xoFkdAoGFj5XU6P3V9lChoBmgJaA9DCCUk0jZ+AXJAlIaUUpRoFU0JAWgWR0CgYXK0tyxSdX2UKGgGaAloD0MIe/ZcpiYlbkCUhpRSlGgVS+JoFkdAoGF2Bas6rHV9lChoBmgJaA9DCLk5lQzAXHJAlIaUUpRoFU02AWgWR0CgYczQ/oq1dX2UKGgGaAloD0MIjCsujgrocUCUhpRSlGgVTRMBaBZHQKBiCnndO7B1fZQoaAZoCWgPQwhJhbGFYCNxQJSGlFKUaBVL3WgWR0CgYiDCgsbvdX2UKGgGaAloD0MIbef7qTFOcUCUhpRSlGgVTQMBaBZHQKBiWnTiKix1fZQoaAZoCWgPQwjysFBrGm9wQJSGlFKUaBVNJQFoFkdAoGJ8gr6LwXV9lChoBmgJaA9DCAWJ7e4BdHJAlIaUUpRoFU0MAWgWR0CgYrKjSG8FdX2UKGgGaAloD0MI9Q8iGTL7ckCUhpRSlGgVS/JoFkdAoGMWlyimEXV9lChoBmgJaA9DCF6hD5ZxMXJAlIaUUpRoFUv2aBZHQKBjkZVn27F1fZQoaAZoCWgPQwi9yAT8WltxQJSGlFKUaBVNGgFoFkdAoGOe8wpOOHV9lChoBmgJaA9DCPim6bNDnnFAlIaUUpRoFU0OAWgWR0CgY7tZvDP4dX2UKGgGaAloD0MIYg/tY0ULc0CUhpRSlGgVTQ8BaBZHQKBjyaYu01J1fZQoaAZoCWgPQwgVxhaC3EFyQJSGlFKUaBVL/GgWR0CgY+ECFK02dX2UKGgGaAloD0MITGvT2F4RbUCUhpRSlGgVS+doFkdAoGQbI1cdHXV9lChoBmgJaA9DCPHydK7oX3JAlIaUUpRoFUvuaBZHQKBkTid8Rcx1fZQoaAZoCWgPQwjS30vhwVRxQJSGlFKUaBVL2GgWR0CgZH/6oESvdX2UKGgGaAloD0MI6NoX0MsLckCUhpRSlGgVS/9oFkdAoGSXqX4TK3V9lChoBmgJaA9DCFN2+kHd4G5AlIaUUpRoFU0HAWgWR0CgZLPGIbfhdX2UKGgGaAloD0MIIhrdQezeb0CUhpRSlGgVS+9oFkdAoGUZyhi9ZnV9lChoBmgJaA9DCNTRcTWyj29AlIaUUpRoFUvnaBZHQKBlOj9n9Nx1fZQoaAZoCWgPQwhwXwfOGdFwQJSGlFKUaBVNBgFoFkdAoGVMOVgQYnV9lChoBmgJaA9DCIF8CRWcmHNAlIaUUpRoFUv8aBZHQKBlmjvd/KB1fZQoaAZoCWgPQwg6IXTQJQdyQJSGlFKUaBVL0WgWR0CgZbAZTAFgdX2UKGgGaAloD0MIQWfSpupEUECUhpRSlGgVS91oFkdAoGZdHYpUgnV9lChoBmgJaA9DCLrXSX3Z53FAlIaUUpRoFUv9aBZHQKBmxRqoIfN1fZQoaAZoCWgPQwjCMjZ0M7JwQJSGlFKUaBVL8GgWR0CgZtJbD/EPdX2UKGgGaAloD0MIR1UTRF1ucECUhpRSlGgVS/loFkdAoGbh8IAwPHV9lChoBmgJaA9DCJSl1vuNKklAlIaUUpRoFUu/aBZHQKBnAP3BYV91fZQoaAZoCWgPQwgce/ZcpjRzQJSGlFKUaBVL/GgWR0CgZxPDgqEwdX2UKGgGaAloD0MID3wMVpxbckCUhpRSlGgVS+5oFkdAoGche1KGtnV9lChoBmgJaA9DCD3wMVgxw3NAlIaUUpRoFUvYaBZHQKBnN+iJwbV1fZQoaAZoCWgPQwgAHebLy1JxQJSGlFKUaBVNCwFoFkdAoGelq33HrHV9lChoBmgJaA9DCHZu2owTCXNAlIaUUpRoFU2oAWgWR0CgaAeC9RJmdX2UKGgGaAloD0MI+rmhKTvAcECUhpRSlGgVTQsBaBZHQKBoDLBbfP51fZQoaAZoCWgPQwj1MLQ6uapyQJSGlFKUaBVL72gWR0CgaB5ZbILgdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 372,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c13613f2f4525d4ab22a098de6df939d0ca01dd4394983691ec1d16549746fe
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd0c825814f11f0e52f9bd2697bd8e191374099856f90f4ef90f66d31f488435
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (203 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 280.6779071243895, "std_reward": 14.988633868251052, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-20T04:11:12.663795"}