gunshi commited on
Commit
9b2e61d
1 Parent(s): 3bf9e47

added model

Browse files
README.md CHANGED
@@ -1,3 +1,32 @@
1
  ---
2
  license: creativeml-openrail-m
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: creativeml-openrail-m
3
  ---
4
+ # Stable Control Representations: Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control
5
+
6
+ [Paper Link](https://arxiv.org/abs/2405.05852)
7
+
8
+ This model repo provides the Stable Diffusion model finetuned on the images from the Something-Something-v2, Epic Kitchen and the Bridge V2 datasets. This repo is related to the [stable-control-representations](https://github.com/ykarmesh/stable-control-representations/) GitHub repo.
9
+
10
+ ## Abstract
11
+
12
+ Vision- and language-guided embodied AI requires a fine-grained understanding of the physical world through language and visual inputs. Such capabilities are difficult to learn solely from task-specific data, which has led to the emergence of pre-trained vision-language models as a tool for transferring representations learned from internet-scale data to downstream tasks and new domains. However, commonly used contrastively trained representations such as in CLIP have been shown to fail at enabling embodied agents to gain a sufficiently fine-grained scene understanding—a capability vital for control. To address this shortcoming, we consider representations from pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts and as such, contain text-conditioned representations that reflect highly fine-grained visuo-spatial information. Using pre-trained text-to-image diffusion models, we construct Stable Control Representations which allow learning downstream control policies that generalize to complex, open-ended environments. We show that policies learned using Stable Control Representations are competitive with state-of-the-art representation learning approaches across a broad range of simulated control settings, encompassing challenging manipulation and navigation tasks. Most notably, we show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark
13
+
14
+
15
+ ## Citing SCR
16
+ If you use SCR in your research, please cite [the following paper](https://arxiv.org/abs/2405.05852):
17
+
18
+ ```bibtex
19
+ @inproceedings{gupta2024scr,
20
+ title={Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control},
21
+ author={Gunshi Gupta and Karmesh Yadav and Yarin Gal and Dhruv Batra and Zsolt Kira and Cong Lu and Tim G. J. Rudner},
22
+ year={2024},
23
+ eprint={2405.05852},
24
+ archivePrefix={arXiv},
25
+ primaryClass={cs.CV}
26
+ }
27
+ ```
28
+
29
+ ## Acknowledgements
30
+ We are thankful to the creators of [Stable Diffusion](https://huggingface.co/runwayml/stable-diffusion-v1-5) for releasing the model, which has significantly contributed to the progress in the field. Additionally, we extend our thanks to the authors of [Visual Cortex](https://github.com/facebookresearch/eai-vc) for releasing the code for CortexBench evaluations.
31
+
32
+
unet_ema/config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.22.0.dev0",
4
+ "_name_or_path": "runwayml/stable-diffusion-v1-5",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": null,
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": null,
9
+ "attention_head_dim": 8,
10
+ "attention_type": "default",
11
+ "block_out_channels": [
12
+ 320,
13
+ 640,
14
+ 1280,
15
+ 1280
16
+ ],
17
+ "center_input_sample": false,
18
+ "class_embed_type": null,
19
+ "class_embeddings_concat": false,
20
+ "conv_in_kernel": 3,
21
+ "conv_out_kernel": 3,
22
+ "cross_attention_dim": 768,
23
+ "cross_attention_norm": null,
24
+ "decay": 0.9999,
25
+ "down_block_types": [
26
+ "CrossAttnDownBlock2D",
27
+ "CrossAttnDownBlock2D",
28
+ "CrossAttnDownBlock2D",
29
+ "DownBlock2D"
30
+ ],
31
+ "downsample_padding": 1,
32
+ "dropout": 0.0,
33
+ "dual_cross_attention": false,
34
+ "encoder_hid_dim": null,
35
+ "encoder_hid_dim_type": null,
36
+ "flip_sin_to_cos": true,
37
+ "freq_shift": 0,
38
+ "in_channels": 4,
39
+ "inv_gamma": 1.0,
40
+ "layers_per_block": 2,
41
+ "mid_block_only_cross_attention": null,
42
+ "mid_block_scale_factor": 1,
43
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
44
+ "min_decay": 0.0,
45
+ "norm_eps": 1e-05,
46
+ "norm_num_groups": 32,
47
+ "num_attention_heads": null,
48
+ "num_class_embeds": null,
49
+ "only_cross_attention": false,
50
+ "optimization_step": 5000,
51
+ "out_channels": 4,
52
+ "power": 0.6666666666666666,
53
+ "projection_class_embeddings_input_dim": null,
54
+ "resnet_out_scale_factor": 1.0,
55
+ "resnet_skip_time_act": false,
56
+ "resnet_time_scale_shift": "default",
57
+ "sample_size": 64,
58
+ "time_cond_proj_dim": null,
59
+ "time_embedding_act_fn": null,
60
+ "time_embedding_dim": null,
61
+ "time_embedding_type": "positional",
62
+ "timestep_post_act": null,
63
+ "transformer_layers_per_block": 1,
64
+ "up_block_types": [
65
+ "UpBlock2D",
66
+ "CrossAttnUpBlock2D",
67
+ "CrossAttnUpBlock2D",
68
+ "CrossAttnUpBlock2D"
69
+ ],
70
+ "upcast_attention": false,
71
+ "update_after_step": 0,
72
+ "use_ema_warmup": false,
73
+ "use_linear_projection": false
74
+ }
unet_ema/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad60f4867e946aa11722c4e60c932533773acd72e353584c4280040470220519
3
+ size 3438167536