--- library_name: transformers language: - multilingual - bn - cs - de - en - et - fi - fr - gu - ha - hi - is - ja - kk - km - lt - lv - pl - ps - ru - ta - tr - uk - xh - zh - zu license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - quality-estimation - regression - generated_from_trainer datasets: - ymoslem/wmt-da-human-evaluation model-index: - name: Quality Estimation for Machine Translation results: - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation-long-context type: QE metrics: - name: Pearson type: Pearson Correlation value: 0.2055 - name: MAE type: Mean Absolute Error value: 0.2004 - name: RMSE type: Root Mean Squared Error value: 0.2767 - name: R-R2 type: R-Squared value: -1.6745 - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation type: QE metrics: - name: Pearson type: Pearson Correlation value: null - name: MAE type: Mean Absolute Error value: null - name: RMSE type: Root Mean Squared Error value: null - name: R-R2 type: R-Squared value: null metrics: - pearsonr - mae - r_squared new_version: ymoslem/ModernBERT-base-qe-v1 --- # Quality Estimation for Machine Translation This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) dataset. It achieves the following results on the evaluation set: - Loss: 0.0561 ## Model description This model is for reference-free, sentence level quality estimation (QE) of machine translation (MT) systems. The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) ## Training and evaluation data This model is trained on the sentence-level quality estimation dataset: [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) ## Training procedure ### Training hyperparameters This version of the model uses tokenizer.model_max_length=512. The model with full length of 8192 can be found here [ymoslem/ModernBERT-base-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-qe-v1), which is still trained on a sentence-level QE dataset [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.0656 | 0.1004 | 1000 | 0.0636 | | 0.0643 | 0.2007 | 2000 | 0.0623 | | 0.0592 | 0.3011 | 3000 | 0.0598 | | 0.0596 | 0.4015 | 4000 | 0.0586 | | 0.0575 | 0.5019 | 5000 | 0.0577 | | 0.0574 | 0.6022 | 6000 | 0.0570 | | 0.0584 | 0.7026 | 7000 | 0.0566 | | 0.0574 | 0.8030 | 8000 | 0.0563 | | 0.0565 | 0.9033 | 9000 | 0.0561 | | 0.0557 | 1.0037 | 10000 | 0.0561 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0