--- library_name: transformers tags: - llama-factory license: apache-2.0 --- ## Info SFT > DPO 순서가 아닌 DPO > SFT 순서로 학습시킨 모델입니다. SFT > DPO는 [여기](https://huggingface.co/youjunhyeok/llama3-8b-ko-sft-dpo-v1)에서 확인해 주세요. ## Model - base model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) ## Dataset - [youjunhyeok/llama3_train](https://huggingface.co/datasets/youjunhyeok/llama3_train) - [youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo](https://huggingface.co/datasets/youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo) ## Load Model Use the following Python code to load the model: ```python3 from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "youjunhyeok/llama3-8B-dpo-sft-v1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) ``` ## Chat ```python3 def chat(message): messages = [ {"role": "system", "content": "당신은 친절하고 도움이 되는 챗봇입니다."}, {"role": "user", "content": message}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=512, eos_token_id=terminators, do_sample=False, temperature=0.5, top_p=0.8, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) chat('한산도 대첩에 대해 아는 대로 얘기해봐') ``` ## Output ``` 한산도 대첩은 조선시대에 일어난 전투로, 이순신 장군이 이끄는 조선군이 일본군을 물리친 전투입니다. ``` ## BenchMark (KOR) ``` # alias A = youjunhyeok/llama3-8B-dpo-sft-v1 B = DavidAhn/Llama-3-8B-slerp-262k C = meta-llama/Meta-Llama-3-8B D = chihoonlee10/T3Q-ko-solar-dpo-v7.0 (24.05.24 ko 리더보드 1등) ``` | Benchmark (macro_f1) | A | B | C | D | |---------------------------|:----:|:----:|:----:|:----:| | kobest_boolq (0-shot) | 84.7 | 33.5 | 38.2 | 34.1 | | kobest_boolq (5-shot) | 86.1 | 68.8 | 83.8 | 93.1 | | kobest_copa (0-shot) | 60.6 | 58.5 | 63.1 | 81.0 | | kobest_copa (5-shot) | 67.2 | 61.7 | 69.1 | 91.0 | | kobest_hellaswag (0-shot) | 40.0 | 43.2 | 42.1 | 55.1 | | kobest_hellaswag (5-shot) | 42.4 | 45.3 | 44.2 | 55.2 | | kobest_sentineg (0-shot) | 52.1 | 34.8 | 51.5 | 82.7 | | kobest_sentineg (5-shot) | 89.4 | 85.8 | 94.7 | 91.4 | ## BenchMark (ENG) | | openbookqa | hellaswag | boolq | arc_easy | arc_challenge | |:----------------------------------------------|---------:|---------:|---------:|---------:|---------:| | youjunhyeok/llama3-8B-dpo-sft-v1 | 0.320 | 0.547 | 0.529 | 0.748 | 0.446 | | meta-llama/Meta-Llama-3-8B-Instruct | 0.338 | 0.576 | 0.831 | 0.815 | 0.529 |