File size: 9,200 Bytes
e1744ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- recall
- precision
- f1
model-index:
- name: DistilBERT-TC2000-10epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DistilBERT-TC2000-10epochs

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0752
- Recall: {'recall': 0.98}
- Precision: {'precision': 0.9803145941921073}
- F1: {'f1': 0.9800242537313432}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Recall            | Precision                         | F1                         |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:---------------------------------:|:--------------------------:|
| 1.0272        | 0.18  | 20   | 0.8815          | {'recall': 0.65}  | {'precision': 0.7778791777580597} | {'f1': 0.6251215862860073} |
| 0.8663        | 0.35  | 40   | 0.6770          | {'recall': 0.905} | {'precision': 0.9120308312976535} | {'f1': 0.9054010850819201} |
| 0.6016        | 0.53  | 60   | 0.4088          | {'recall': 0.92}  | {'precision': 0.9238949736347314} | {'f1': 0.9207242314918276} |
| 0.3139        | 0.71  | 80   | 0.2508          | {'recall': 0.93}  | {'precision': 0.9322386382325532} | {'f1': 0.929768888773222}  |
| 0.2645        | 0.88  | 100  | 0.2048          | {'recall': 0.955} | {'precision': 0.958280303030303}  | {'f1': 0.954923196771023}  |
| 0.1811        | 1.06  | 120  | 0.1446          | {'recall': 0.965} | {'precision': 0.9675925925925927} | {'f1': 0.9648852158183796} |
| 0.1429        | 1.24  | 140  | 0.1245          | {'recall': 0.975} | {'precision': 0.9762354497354496} | {'f1': 0.9749193929610656} |
| 0.0941        | 1.42  | 160  | 0.1338          | {'recall': 0.965} | {'precision': 0.9683561643835616} | {'f1': 0.9652805623632961} |
| 0.1242        | 1.59  | 180  | 0.0872          | {'recall': 0.975} | {'precision': 0.9759505494505496} | {'f1': 0.9750344590666455} |
| 0.0893        | 1.77  | 200  | 0.0572          | {'recall': 0.985} | {'precision': 0.9853867102396515} | {'f1': 0.9849564819176908} |
| 0.0477        | 1.95  | 220  | 0.0794          | {'recall': 0.975} | {'precision': 0.9762354497354496} | {'f1': 0.9749193929610656} |
| 0.0128        | 2.12  | 240  | 0.0697          | {'recall': 0.98}  | {'precision': 0.9807447665056361} | {'f1': 0.9799368665956859} |
| 0.0449        | 2.3   | 260  | 0.0635          | {'recall': 0.97}  | {'precision': 0.9725}             | {'f1': 0.9702302752172594} |
| 0.0996        | 2.48  | 280  | 0.0782          | {'recall': 0.97}  | {'precision': 0.9725}             | {'f1': 0.9700752508361203} |
| 0.0328        | 2.65  | 300  | 0.0127          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949962534538471} |
| 0.0747        | 2.83  | 320  | 0.0380          | {'recall': 0.975} | {'precision': 0.9767605633802816} | {'f1': 0.9751792302987906} |
| 0.0413        | 3.01  | 340  | 0.0127          | {'recall': 1.0}   | {'precision': 1.0}                | {'f1': 1.0}                |
| 0.0404        | 3.19  | 360  | 0.0120          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949915278995033} |
| 0.0226        | 3.36  | 380  | 0.0085          | {'recall': 1.0}   | {'precision': 1.0}                | {'f1': 1.0}                |
| 0.0543        | 3.54  | 400  | 0.0139          | {'recall': 0.995} | {'precision': 0.9950925925925926} | {'f1': 0.9950042805165157} |
| 0.0528        | 3.72  | 420  | 0.0408          | {'recall': 0.985} | {'precision': 0.9856521739130435} | {'f1': 0.9850251572327045} |
| 0.0051        | 3.89  | 440  | 0.0808          | {'recall': 0.97}  | {'precision': 0.9725}             | {'f1': 0.9702302752172594} |
| 0.014         | 4.07  | 460  | 0.0419          | {'recall': 0.985} | {'precision': 0.985241846323936}  | {'f1': 0.985017255463425}  |
| 0.051         | 4.25  | 480  | 0.0127          | {'recall': 0.995} | {'precision': 0.9950925925925926} | {'f1': 0.9950042805165157} |
| 0.0501        | 4.42  | 500  | 0.0200          | {'recall': 0.985} | {'precision': 0.9850867537313434} | {'f1': 0.985009807126512}  |
| 0.0062        | 4.6   | 520  | 0.0247          | {'recall': 0.985} | {'precision': 0.985241846323936}  | {'f1': 0.985017255463425}  |
| 0.0118        | 4.78  | 540  | 0.0614          | {'recall': 0.975} | {'precision': 0.975962157809984}  | {'f1': 0.975047977706797}  |
| 0.0348        | 4.96  | 560  | 0.0516          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0226        | 5.13  | 580  | 0.0144          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949962534538471} |
| 0.0159        | 5.31  | 600  | 0.0129          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949962534538471} |
| 0.0026        | 5.49  | 620  | 0.0176          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949962534538471} |
| 0.016         | 5.66  | 640  | 0.0404          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0433        | 5.84  | 660  | 0.0663          | {'recall': 0.975} | {'precision': 0.9756772575250836} | {'f1': 0.975041928721174}  |
| 0.0354        | 6.02  | 680  | 0.0253          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949962534538471} |
| 0.0041        | 6.19  | 700  | 0.0961          | {'recall': 0.97}  | {'precision': 0.9711688311688311} | {'f1': 0.9700614296351452} |
| 0.0579        | 6.37  | 720  | 0.1336          | {'recall': 0.965} | {'precision': 0.966783728687917}  | {'f1': 0.9650813612906225} |
| 0.0025        | 6.55  | 740  | 0.0424          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0328        | 6.73  | 760  | 0.0190          | {'recall': 0.995} | {'precision': 0.995060975609756}  | {'f1': 0.9949962534538471} |
| 0.0217        | 6.9   | 780  | 0.0488          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0096        | 7.08  | 800  | 0.1115          | {'recall': 0.97}  | {'precision': 0.9711688311688311} | {'f1': 0.9700614296351452} |
| 0.0106        | 7.26  | 820  | 0.0673          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0077        | 7.43  | 840  | 0.0354          | {'recall': 0.985} | {'precision': 0.9850867537313434} | {'f1': 0.985009807126512}  |
| 0.0222        | 7.61  | 860  | 0.0410          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0026        | 7.79  | 880  | 0.0590          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0576        | 7.96  | 900  | 0.0596          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.018         | 8.14  | 920  | 0.0428          | {'recall': 0.985} | {'precision': 0.9850867537313434} | {'f1': 0.985009807126512}  |
| 0.027         | 8.32  | 940  | 0.0425          | {'recall': 0.985} | {'precision': 0.9850867537313434} | {'f1': 0.985009807126512}  |
| 0.036         | 8.5   | 960  | 0.0341          | {'recall': 0.985} | {'precision': 0.9850867537313434} | {'f1': 0.985009807126512}  |
| 0.0094        | 8.67  | 980  | 0.0457          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0192        | 8.85  | 1000 | 0.0586          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.03          | 9.03  | 1020 | 0.0789          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0091        | 9.2   | 1040 | 0.0691          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0197        | 9.38  | 1060 | 0.0753          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0025        | 9.56  | 1080 | 0.0796          | {'recall': 0.975} | {'precision': 0.9756772575250836} | {'f1': 0.975041928721174}  |
| 0.0414        | 9.73  | 1100 | 0.0791          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |
| 0.0075        | 9.91  | 1120 | 0.0756          | {'recall': 0.98}  | {'precision': 0.9803145941921073} | {'f1': 0.9800242537313432} |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3