File size: 27,787 Bytes
da855ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import json
import logging
import os
import warnings
from pathlib import Path
import numpy as np
import pandas as pd
from omegaconf import DictConfig
from scipy import interpolate
from scipy.interpolate import griddata
from anim import bvh, quat
from audio.audio_files import read_wavfile, write_wavefile
from audio.spectrograms import extract_mel_spectrogram_for_tts
FILE_ROOT = os.path.dirname(os.path.realpath(__file__))
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
_logger = logging.getLogger(__name__)
_logger.propagate = False
warnings.simplefilter("ignore")
# ===============================================
# Audio
# ===============================================
def extract_energy(mel_spec):
energy = np.linalg.norm(mel_spec, axis=0)
return energy
def preprocess_audio(audio_data, anim_fs, anim_length, params, feature_type):
if params.normalize_loudness:
import pyloudnorm as pyln
meter = pyln.Meter(params.sampling_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(audio_data)
# loudness normalize audio to -20 dB LUFS
audio_data = pyln.normalize.loudness(audio_data, loudness, -20.0)
resample_method = params.resample_method
audio_feature = []
# Extract MEL spectrogram
mel_spec = extract_mel_spectrogram_for_tts(
wav_signal=audio_data,
fs=params.sampling_rate,
n_fft=params.filter_length,
step_size=params.hop_length,
n_mels=params.n_mel_channels,
mel_fmin=params.mel_fmin,
mel_fmax=params.mel_fmax,
min_amplitude=params.min_clipping,
pre_emphasis=params.pre_emphasis,
pre_emph_coeff=params.pre_emph_coeff,
dynamic_range=None,
real_amplitude=params.real_amplitude,
centered=params.centered,
normalize_mel_bins=params.normalize_mel_bins,
normalize_range=params.normalize_range,
logger=_logger,
)[0].T
mel_spec = 10 ** (mel_spec / 20)
mel_spec = np.log(mel_spec)
if "mel_spec" in feature_type:
mel_spec_interp = interpolate.griddata(
np.arange(len(mel_spec)),
mel_spec,
((params.sampling_rate / params.hop_length) / anim_fs) * np.arange(anim_length),
method=resample_method,
).astype(np.float32)
audio_feature.append(mel_spec_interp)
if "energy" in feature_type:
energy = extract_energy(np.exp(mel_spec).T)
f = interpolate.interp1d(np.arange(len(energy)), energy, kind=resample_method, fill_value="extrapolate")
energy_interp = f(
((params.sampling_rate / params.hop_length) / anim_fs) * np.arange(anim_length)
).astype(np.float32)
audio_feature.append(energy_interp[:, np.newaxis])
audio_feature = np.concatenate(audio_feature, axis=1)
return audio_feature
# ===============================================
# Animation
# ===============================================
def preprocess_animation(anim_data, conf=dict(), animation_path=None, info_df=None, i=0):
nframes = len(anim_data["rotations"])
njoints = len(anim_data["parents"])
dt = anim_data["frametime"]
lrot = quat.unroll(quat.from_euler(np.radians(anim_data["rotations"]), anim_data["order"]))
lpos = anim_data["positions"]
grot, gpos = quat.fk(lrot, lpos, anim_data["parents"])
# Find root (Projected hips on the ground)
root_pos = gpos[:, anim_data["names"].index("Spine2")] * np.array([1, 0, 1])
# root_pos = signal.savgol_filter(root_pos, 31, 3, axis=0, mode="interp")
# Root direction
root_fwd = quat.mul_vec(grot[:, anim_data["names"].index("Hips")], np.array([[0, 0, 1]]))
root_fwd[:, 1] = 0
root_fwd = root_fwd / np.sqrt(np.sum(root_fwd * root_fwd, axis=-1))[..., np.newaxis]
# root_fwd = signal.savgol_filter(root_fwd, 61, 3, axis=0, mode="interp")
# root_fwd = root_fwd / np.sqrt(np.sum(root_fwd * root_fwd, axis=-1))[..., np.newaxis]
# Root rotation
root_rot = quat.normalize(
quat.between(np.array([[0, 0, 1]]).repeat(len(root_fwd), axis=0), root_fwd)
)
# Find look at direction
gaze_lookat = quat.mul_vec(grot[:, anim_data["names"].index("Head")], np.array([0, 0, 1]))
gaze_lookat[:, 1] = 0
gaze_lookat = gaze_lookat / np.sqrt(np.sum(np.square(gaze_lookat), axis=-1))[..., np.newaxis]
# Find gaze position
gaze_distance = 100 # Assume other actor is one meter away
gaze_pos_all = root_pos + gaze_distance * gaze_lookat
gaze_pos = np.median(gaze_pos_all, axis=0)
gaze_pos = gaze_pos[np.newaxis].repeat(nframes, axis=0)
# Visualize Gaze Pos
if conf.get("visualize_gaze", False):
import matplotlib.pyplot as plt
plt.scatter(gaze_pos_all[:, 0], gaze_pos_all[:, 2], s=0.1, marker=".")
plt.scatter(gaze_pos[0, 0], gaze_pos[0, 2])
plt.scatter(root_pos[:, 0], root_pos[:, 2], s=0.1, marker=".")
plt.quiver(root_pos[::60, 0], root_pos[::60, 2], root_fwd[::60, 0], root_fwd[::60, 2])
plt.gca().set_aspect("equal")
plt.show()
# Compute local gaze dir
gaze_dir = gaze_pos - root_pos
# gaze_dir = gaze_dir / np.sqrt(np.sum(np.square(gaze_dir), axis=-1))[..., np.newaxis]
gaze_dir = quat.mul_vec(quat.inv(root_rot), gaze_dir)
# Make relative to root
lrot[:, 0] = quat.mul(quat.inv(root_rot), lrot[:, 0])
lpos[:, 0] = quat.mul_vec(quat.inv(root_rot), lpos[:, 0] - root_pos)
# Local velocities
lvel = np.zeros_like(lpos)
lvel[1:] = (lpos[1:] - lpos[:-1]) / dt
lvel[0] = lvel[1] - (lvel[3] - lvel[2])
lvrt = np.zeros_like(lpos)
lvrt[1:] = quat.to_helical(quat.abs(quat.mul(lrot[1:], quat.inv(lrot[:-1])))) / dt
lvrt[0] = lvrt[1] - (lvrt[3] - lvrt[2])
# Root velocities
root_vrt = np.zeros_like(root_pos)
root_vrt[1:] = quat.to_helical(quat.abs(quat.mul(root_rot[1:], quat.inv(root_rot[:-1])))) / dt
root_vrt[0] = root_vrt[1] - (root_vrt[3] - root_vrt[2])
root_vrt[1:] = quat.mul_vec(quat.inv(root_rot[:-1]), root_vrt[1:])
root_vrt[0] = quat.mul_vec(quat.inv(root_rot[0]), root_vrt[0])
root_vel = np.zeros_like(root_pos)
root_vel[1:] = (root_pos[1:] - root_pos[:-1]) / dt
root_vel[0] = root_vel[1] - (root_vel[3] - root_vel[2])
root_vel[1:] = quat.mul_vec(quat.inv(root_rot[:-1]), root_vel[1:])
root_vel[0] = quat.mul_vec(quat.inv(root_rot[0]), root_vel[0])
# Compute character space
crot, cpos, cvrt, cvel = quat.fk_vel(lrot, lpos, lvrt, lvel, anim_data["parents"])
# Compute 2-axis transforms
ltxy = np.zeros(dtype=np.float32, shape=[len(lrot), njoints, 2, 3])
ltxy[..., 0, :] = quat.mul_vec(lrot, np.array([1.0, 0.0, 0.0]))
ltxy[..., 1, :] = quat.mul_vec(lrot, np.array([0.0, 1.0, 0.0]))
ctxy = np.zeros(dtype=np.float32, shape=[len(crot), njoints, 2, 3])
ctxy[..., 0, :] = quat.mul_vec(crot, np.array([1.0, 0.0, 0.0]))
ctxy[..., 1, :] = quat.mul_vec(crot, np.array([0.0, 1.0, 0.0]))
if conf.get("save_normalized_animations", False):
anim_data["positions"] = lpos
anim_data["rotations"] = np.degrees(quat.to_euler(lrot, order=anim_data["order"]))
normalized_animations_path = animation_path / "processed" / "normalized_animations"
normalized_animations_path.mkdir(exist_ok=True)
animation_norm_file = str(
normalized_animations_path / info_df.iloc[i].anim_bvh).replace(
".bvh", "_norm.bvh"
)
bvh.save(animation_norm_file, anim_data)
lpos_denorm = lpos.copy()
lpos_denorm[:, 0] = quat.mul_vec(root_rot, lpos_denorm[:, 0]) + root_pos
lrot_denorm = lrot.copy()
lrot_denorm[:, 0] = quat.mul(root_rot, lrot_denorm[:, 0])
anim_data["positions"] = lpos_denorm
anim_data["rotations"] = np.degrees(quat.to_euler(lrot_denorm, order=anim_data["order"]))
animation_denorm_file = str(
animation_path / "processed" / "normalized_animations" / info_df.iloc[i].anim_bvh
).replace(".bvh", "_denorm.bvh")
bvh.save(animation_denorm_file, anim_data)
return (
root_pos,
root_rot,
root_vel,
root_vrt,
lpos,
lrot,
ltxy,
lvel,
lvrt,
cpos,
crot,
ctxy,
cvel,
cvrt,
gaze_pos,
gaze_dir,
)
# ===============================================
# Pipeline
# ===============================================
def data_pipeline(conf):
"""Prepare Audio and Animation data for training
Args:
conf: config file
Returns:
processed_data, data_definition
"""
from rich.progress import track
from rich.console import Console
from rich.table import Table
console = Console(record=True)
console.print("This may take a little bit of time ...")
len_ratios = conf["len_ratios"]
base_path = Path(conf["base_path"])
processed_data_path = base_path / conf["processed_data_path"]
processed_data_path.mkdir(exist_ok=True)
info_filename = base_path / "info.csv"
animation_path = base_path / "original"
audio_path = base_path / "original"
with open(str(processed_data_path / "data_pipeline_conf.json"), "w") as f:
json.dump(conf, f, indent=4)
conf = DictConfig(conf)
info_df = pd.read_csv(info_filename)
num_of_samples = len(info_df)
audio_desired_fs = conf.audio_conf["sampling_rate"]
X_audio_features = []
Y_root_pos = []
Y_root_rot = []
Y_root_vrt = []
Y_root_vel = []
Y_lpos = []
Y_lrot = []
Y_ltxy = []
Y_lvel = []
Y_lvrt = []
Y_gaze_pos = []
Y_gaze_dir = []
current_start_frame = 0
ranges_train = []
ranges_valid = []
ranges_train_labels = []
ranges_valid_labels = []
# for i in track(range(num_of_samples), description="Processing...", complete_style="magenta"):
for i in range(num_of_samples):
animation_file = str(animation_path / info_df.iloc[i].anim_bvh)
audio_file = audio_path / info_df.iloc[i].audio_filename
# Load Animation #
original_anim_data = bvh.load(animation_file)
anim_fps = int(np.ceil(1 / original_anim_data["frametime"]))
assert anim_fps == 60
# Load Audio #
audio_sr, original_audio_data = read_wavfile(
audio_file,
rescale=True,
desired_fs=audio_desired_fs,
desired_nb_channels=None,
out_type="float32",
logger=_logger,
)
# Silence Audio #
speacker_timing_df = pd.read_csv(audio_file.with_suffix(".csv"))
# Mark regions that don't need silencing
mask = np.zeros_like(original_audio_data)
for ind, row in speacker_timing_df.iterrows():
if "R" in row["#"]:
start_time = [int(num) for num in row["Start"].replace(".", ":").rsplit(":")]
end_time = [int(num) for num in row["End"].replace(".", ":").rsplit(":")]
start_time = (
start_time[0] * 60 * audio_desired_fs
+ start_time[1] * audio_desired_fs
+ int(start_time[2] * (audio_desired_fs / 1000))
)
end_time = (
end_time[0] * 60 * audio_desired_fs
+ end_time[1] * audio_desired_fs
+ int(end_time[2] * (audio_desired_fs / 1000))
)
mask[start_time:end_time] = 1.0
# Silence unmarked regions
original_audio_data = original_audio_data * mask
# Sync & Trim #
# Get mark-ups
audio_start_time = info_df.iloc[i].audio_start_time
audio_start_time = [int(num) for num in audio_start_time.rsplit(":")]
anim_start_time = info_df.iloc[i].anim_start_time
anim_start_time = [int(num) for num in anim_start_time.rsplit(":")]
acting_start_time = info_df.iloc[i].acting_start_time
acting_start_time = [int(num) for num in acting_start_time.rsplit(":")]
acting_end_time = info_df.iloc[i].acting_end_time
acting_end_time = [int(num) for num in acting_end_time.rsplit(":")]
# Compute Timings (This is assuming that audio timing is given in 30fps)
audio_start_time_in_thirds = (
audio_start_time[0] * 216000
+ audio_start_time[1] * 3600
+ audio_start_time[2] * 60
+ audio_start_time[3] * 2
)
anim_start_time_in_thirds = (
anim_start_time[0] * 216000
+ anim_start_time[1] * 3600
+ anim_start_time[2] * 60
+ anim_start_time[3] * 1
)
acting_start_time_in_thirds = (
acting_start_time[0] * 216000
+ acting_start_time[1] * 3600
+ acting_start_time[2] * 60
+ acting_start_time[3] * 1
)
acting_end_time_in_thirds = (
acting_end_time[0] * 216000
+ acting_end_time[1] * 3600
+ acting_end_time[2] * 60
+ acting_end_time[3] * 1
)
acting_start_in_audio_ref = int(
np.round(
(acting_start_time_in_thirds - audio_start_time_in_thirds) * (audio_sr / 60)
)
)
acting_end_in_audio_ref = int(
np.round((acting_end_time_in_thirds - audio_start_time_in_thirds) * (audio_sr / 60))
)
acting_start_in_anim_ref = int(
np.round(
(acting_start_time_in_thirds - anim_start_time_in_thirds) * (anim_fps / 60)
)
)
acting_end_in_anim_ref = int(
np.round((acting_end_time_in_thirds - anim_start_time_in_thirds) * (anim_fps / 60))
)
if (
acting_start_in_audio_ref < 0
or acting_start_in_anim_ref < 0
or acting_end_in_audio_ref < 0
or acting_end_in_anim_ref < 0
):
raise ValueError("The timings are incorrect!")
# Trim to equal length
original_audio_data = original_audio_data[acting_start_in_audio_ref:acting_end_in_audio_ref]
original_anim_data["rotations"] = original_anim_data["rotations"][
acting_start_in_anim_ref:acting_end_in_anim_ref
]
original_anim_data["positions"] = original_anim_data["positions"][
acting_start_in_anim_ref:acting_end_in_anim_ref
]
for len_ratio in len_ratios:
anim_data = original_anim_data.copy()
audio_data = original_audio_data.copy()
if len_ratio != 1.0:
n_anim_frames = len(original_anim_data["rotations"])
nbones = anim_data["positions"].shape[1]
original_times = np.linspace(0, n_anim_frames - 1, n_anim_frames)
sample_times = np.linspace(0, n_anim_frames - 1, int(len_ratio * (n_anim_frames)))
anim_data["positions"] = griddata(original_times, anim_data["positions"].reshape([n_anim_frames, -1]),
sample_times, method='cubic').reshape([len(sample_times), nbones, 3])
rotations = quat.unroll(quat.from_euler(np.radians(anim_data['rotations']), order=anim_data['order']))
rotations = griddata(original_times, rotations.reshape([n_anim_frames, -1]), sample_times,
method='cubic').reshape([len(sample_times), nbones, 4])
rotations = quat.normalize(rotations)
anim_data["rotations"] = np.degrees(quat.to_euler(rotations, order=anim_data["order"]))
n_audio_frames = len(audio_data)
original_times = np.linspace(0, n_audio_frames - 1, n_audio_frames)
sample_times = np.linspace(0, n_audio_frames - 1, int(len_ratio * (n_audio_frames)))
audio_data = griddata(original_times, audio_data, sample_times, method='cubic')
# assert len(audio_data) / audio_sr == len(anim_data["rotations"]) / anim_fps
# Saving Trimmed Files
folder = "valid" if info_df.iloc[i].validation else "train"
trimmed_filename = info_df.iloc[i].anim_bvh.split(".")[0]
trimmed_filename = trimmed_filename + "_x_" + str(len_ratio).replace(".", "_")
if conf["save_trimmed_audio"]:
target_path = processed_data_path / "trimmed" / folder
target_path.mkdir(exist_ok=True, parents=True)
write_wavefile(target_path / (trimmed_filename + ".wav"), audio_data, audio_sr)
if conf["save_trimmed_animation"]:
target_path = processed_data_path / "trimmed" / folder
target_path.mkdir(exist_ok=True, parents=True)
# Centering the character. Comment if you want the original global position and orientation
output = anim_data.copy()
lrot = quat.from_euler(np.radians(output["rotations"]), output["order"])
offset_pos = output["positions"][0:1, 0:1].copy() * np.array([1, 0, 1])
offset_rot = lrot[0:1, 0:1].copy() * np.array([1, 0, 1, 0])
root_pos = quat.mul_vec(quat.inv(offset_rot), output["positions"][:, 0:1] - offset_pos)
output["positions"][:, 0:1] = quat.mul_vec(quat.inv(offset_rot),
output["positions"][:, 0:1] - offset_pos)
output["rotations"][:, 0:1] = np.degrees(
quat.to_euler(quat.mul(quat.inv(offset_rot), lrot[:, 0:1]), order=output["order"]))
bvh.save(target_path / (trimmed_filename + ".bvh"), anim_data)
# Extracting Audio Features #
audio_features = preprocess_audio(
audio_data,
anim_fps,
len(anim_data["rotations"]),
conf.audio_conf,
feature_type=conf.audio_feature_type,
)
# Check if the lengths are correct and no NaNs
assert len(audio_features) == len(anim_data["rotations"])
assert not np.any(np.isnan(audio_features))
if conf["visualize_spectrogram"]:
import matplotlib.pyplot as plt
plt.imshow(audio_features.T, interpolation="nearest")
plt.show()
# Extracting Animation Features
nframes = len(anim_data["rotations"])
dt = anim_data["frametime"]
(
root_pos,
root_rot,
root_vel,
root_vrt,
lpos,
lrot,
ltxy,
lvel,
lvrt,
cpos,
crot,
ctxy,
cvel,
cvrt,
gaze_pos,
gaze_dir,
) = preprocess_animation(anim_data, conf, animation_path, info_df, i)
# Appending Data
X_audio_features.append(audio_features)
Y_root_pos.append(root_pos)
Y_root_rot.append(root_rot)
Y_root_vel.append(root_vel)
Y_root_vrt.append(root_vrt)
Y_lpos.append(lpos)
Y_lrot.append(lrot)
Y_ltxy.append(ltxy)
Y_lvel.append(lvel)
Y_lvrt.append(lvrt)
Y_gaze_pos.append(gaze_pos)
Y_gaze_dir.append(gaze_dir)
# Append to Ranges
current_end_frame = nframes + current_start_frame
if info_df.iloc[i].validation:
ranges_valid.append([current_start_frame, current_end_frame])
ranges_valid_labels.append(info_df.iloc[i].style)
else:
ranges_train.append([current_start_frame, current_end_frame])
ranges_train_labels.append(info_df.iloc[i].style)
current_start_frame = current_end_frame
# Processing Labels
ranges_train = np.array(ranges_train, dtype=np.int32)
ranges_valid = np.array(ranges_valid, dtype=np.int32)
label_names = list(set(ranges_train_labels + ranges_valid_labels))
ranges_train_labels = np.array(
[label_names.index(label) for label in ranges_train_labels], dtype=np.int32
)
ranges_valid_labels = np.array(
[label_names.index(label) for label in ranges_valid_labels], dtype=np.int32
)
# Concatenating Data
X_audio_features = np.concatenate(X_audio_features, axis=0).astype(np.float32)
Y_root_pos = np.concatenate(Y_root_pos, axis=0).astype(np.float32)
Y_root_rot = np.concatenate(Y_root_rot, axis=0).astype(np.float32)
Y_root_vel = np.concatenate(Y_root_vel, axis=0).astype(np.float32)
Y_root_vrt = np.concatenate(Y_root_vrt, axis=0).astype(np.float32)
Y_lpos = np.concatenate(Y_lpos, axis=0).astype(np.float32)
Y_lrot = np.concatenate(Y_lrot, axis=0).astype(np.float32)
Y_ltxy = np.concatenate(Y_ltxy, axis=0).astype(np.float32)
Y_lvel = np.concatenate(Y_lvel, axis=0).astype(np.float32)
Y_lvrt = np.concatenate(Y_lvrt, axis=0).astype(np.float32)
Y_gaze_pos = np.concatenate(Y_gaze_pos, axis=0).astype(np.float32)
Y_gaze_dir = np.concatenate(Y_gaze_dir, axis=0).astype(np.float32)
# Compute Means & Stds
# Filter out start and end frames
ranges_mask = np.zeros(len(X_audio_features), dtype=bool)
for s, e in ranges_train:
ranges_mask[s + 2: e - 2] = True
# Compute Means
Y_root_vel_mean = Y_root_vel[ranges_mask].mean(axis=0)
Y_root_vrt_mean = Y_root_vrt[ranges_mask].mean(axis=0)
Y_lpos_mean = Y_lpos[ranges_mask].mean(axis=0)
Y_ltxy_mean = Y_ltxy[ranges_mask].mean(axis=0)
Y_lvel_mean = Y_lvel[ranges_mask].mean(axis=0)
Y_lvrt_mean = Y_lvrt[ranges_mask].mean(axis=0)
Y_gaze_dir_mean = Y_gaze_dir[ranges_mask].mean(axis=0)
audio_input_mean = X_audio_features[ranges_mask].mean(axis=0)
anim_input_mean = np.hstack(
[
Y_root_vel_mean.ravel(),
Y_root_vrt_mean.ravel(),
Y_lpos_mean.ravel(),
Y_ltxy_mean.ravel(),
Y_lvel_mean.ravel(),
Y_lvrt_mean.ravel(),
Y_gaze_dir_mean.ravel(),
]
)
# Compute Stds
Y_root_vel_std = Y_root_vel[ranges_mask].std() + 1e-10
Y_root_vrt_std = Y_root_vrt[ranges_mask].std() + 1e-10
Y_lpos_std = Y_lpos[ranges_mask].std() + 1e-10
Y_ltxy_std = Y_ltxy[ranges_mask].std() + 1e-10
Y_lvel_std = Y_lvel[ranges_mask].std() + 1e-10
Y_lvrt_std = Y_lvrt[ranges_mask].std() + 1e-10
Y_gaze_dir_std = Y_gaze_dir[ranges_mask].std() + 1e-10
audio_input_std = X_audio_features[ranges_mask].std() + 1e-10
anim_input_std = np.hstack(
[
Y_root_vel_std.repeat(len(Y_root_vel_mean.ravel())),
Y_root_vrt_std.repeat(len(Y_root_vrt_mean.ravel())),
Y_lpos_std.repeat(len(Y_lpos_mean.ravel())),
Y_ltxy_std.repeat(len(Y_ltxy_mean.ravel())),
Y_lvel_std.repeat(len(Y_lvel_mean.ravel())),
Y_lvrt_std.repeat(len(Y_lvrt_mean.ravel())),
Y_gaze_dir_std.repeat(len(Y_gaze_dir_mean.ravel())),
]
)
# Compute Output Means
anim_output_mean = np.hstack(
[
Y_root_vel_mean.ravel(),
Y_root_vrt_mean.ravel(),
Y_lpos_mean.ravel(),
Y_ltxy_mean.ravel(),
Y_lvel_mean.ravel(),
Y_lvrt_mean.ravel(),
]
)
# Compute Output Stds
Y_root_vel_out_std = Y_root_vel[ranges_mask].std(axis=0)
Y_root_vrt_out_std = Y_root_vrt[ranges_mask].std(axis=0)
Y_lpos_out_std = Y_lpos[ranges_mask].std(axis=0)
Y_ltxy_out_std = Y_ltxy[ranges_mask].std(axis=0)
Y_lvel_out_std = Y_lvel[ranges_mask].std(axis=0)
Y_lvrt_out_std = Y_lvrt[ranges_mask].std(axis=0)
anim_output_std = np.hstack(
[
Y_root_vel_out_std.ravel(),
Y_root_vrt_out_std.ravel(),
Y_lpos_out_std.ravel(),
Y_ltxy_out_std.ravel(),
Y_lvel_out_std.ravel(),
Y_lvrt_out_std.ravel(),
]
)
processed_data = dict(
X_audio_features=X_audio_features,
Y_root_pos=Y_root_pos,
Y_root_rot=Y_root_rot,
Y_root_vel=Y_root_vel,
Y_root_vrt=Y_root_vrt,
Y_lpos=Y_lpos,
Y_ltxy=Y_ltxy,
Y_lvel=Y_lvel,
Y_lvrt=Y_lvrt,
Y_gaze_pos=Y_gaze_pos,
ranges_train=ranges_train,
ranges_valid=ranges_valid,
ranges_train_labels=ranges_train_labels,
ranges_valid_labels=ranges_valid_labels,
audio_input_mean=audio_input_mean,
audio_input_std=audio_input_std,
anim_input_mean=anim_input_mean,
anim_input_std=anim_input_std,
anim_output_mean=anim_output_mean,
anim_output_std=anim_output_std,
)
stats = dict(
ranges_train=ranges_train,
ranges_valid=ranges_valid,
ranges_train_labels=ranges_train_labels,
ranges_valid_labels=ranges_valid_labels,
audio_input_mean=audio_input_mean,
audio_input_std=audio_input_std,
anim_input_mean=anim_input_mean,
anim_input_std=anim_input_std,
anim_output_mean=anim_output_mean,
anim_output_std=anim_output_std,
)
data_definition = dict(
dt=dt,
label_names=label_names,
parents=anim_data["parents"].tolist(),
bone_names=anim_data["names"],
)
# Save Data
if conf["save_final_data"]:
np.savez(processed_data_path / "processed_data.npz", **processed_data)
np.savez(processed_data_path / "stats.npz", **stats)
with open(str(processed_data_path / "data_definition.json"), "w") as f:
json.dump(data_definition, f, indent=4)
# Data Stats:
nlabels = len(label_names)
df = pd.DataFrame()
df["Dataset"] = ["Train", "Validation", "Total"]
pd.set_option("display.max_rows", None, "display.max_columns", None)
table = Table(title="Data Info", show_lines=True, row_styles=["magenta"])
table.add_column("Dataset")
data_len = 0
for i in range(nlabels):
ind_mask = ranges_train_labels == i
ranges = ranges_train[ind_mask]
num_train_frames = (
np.sum(ranges[:, 1] - ranges[:, 0]) / 2
) # It is divided by two as we have mirrored versions too
ind_mask = ranges_valid_labels == i
ranges = ranges_valid[ind_mask]
num_valid_frames = np.sum(ranges[:, 1] - ranges[:, 0]) / 2
total = num_train_frames + num_valid_frames
df[label_names[i]] = [
f"{num_train_frames} frames - {num_train_frames / 60:.1f} secs",
f"{num_valid_frames} frames - {num_valid_frames / 60:.1f} secs",
f"{total} frames - {total / 60:.1f} secs",
]
table.add_column(label_names[i])
data_len += total
for i in range(3):
table.add_row(*list(df.iloc[i]))
console.print(table)
console.print(f"Total length of dataset is {data_len} frames - {data_len / 60:.1f} seconds")
console_print_file = processed_data_path / "data_info.html"
console.print(dict(conf))
console.save_html(str(console_print_file))
return processed_data, data_definition
if __name__ == "__main__":
config_file = "../configs/data_pipeline_conf_v1.json"
with open(config_file, "r") as f:
conf = json.load(f)
data_pipeline(conf)
|