|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from typing import Union, Tuple, Iterable, List, Optional, Dict |
|
|
|
from pdb import set_trace as st |
|
|
|
def pair(t): |
|
return t if isinstance(t, tuple) else (t, t) |
|
|
|
def make_scratch(in_shape, out_shape, groups=1, expand=False): |
|
scratch = nn.Module() |
|
|
|
out_shape1 = out_shape |
|
out_shape2 = out_shape |
|
out_shape3 = out_shape |
|
out_shape4 = out_shape |
|
if expand == True: |
|
out_shape1 = out_shape |
|
out_shape2 = out_shape * 2 |
|
out_shape3 = out_shape * 4 |
|
out_shape4 = out_shape * 8 |
|
|
|
scratch.layer1_rn = nn.Conv2d( |
|
in_shape[0], |
|
out_shape1, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
scratch.layer2_rn = nn.Conv2d( |
|
in_shape[1], |
|
out_shape2, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
scratch.layer3_rn = nn.Conv2d( |
|
in_shape[2], |
|
out_shape3, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
scratch.layer4_rn = nn.Conv2d( |
|
in_shape[3], |
|
out_shape4, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
|
|
scratch.layer_rn = nn.ModuleList([ |
|
scratch.layer1_rn, |
|
scratch.layer2_rn, |
|
scratch.layer3_rn, |
|
scratch.layer4_rn, |
|
]) |
|
|
|
return scratch |
|
|
|
class ResidualConvUnit_custom(nn.Module): |
|
"""Residual convolution module.""" |
|
|
|
def __init__(self, features, activation, bn): |
|
"""Init. |
|
Args: |
|
features (int): number of features |
|
""" |
|
super().__init__() |
|
|
|
self.bn = bn |
|
|
|
self.groups = 1 |
|
|
|
self.conv1 = nn.Conv2d( |
|
features, |
|
features, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=not self.bn, |
|
groups=self.groups, |
|
) |
|
|
|
self.conv2 = nn.Conv2d( |
|
features, |
|
features, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=not self.bn, |
|
groups=self.groups, |
|
) |
|
|
|
if self.bn == True: |
|
self.bn1 = nn.BatchNorm2d(features) |
|
self.bn2 = nn.BatchNorm2d(features) |
|
|
|
self.activation = activation |
|
|
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
Args: |
|
x (tensor): input |
|
Returns: |
|
tensor: output |
|
""" |
|
|
|
out = self.activation(x) |
|
out = self.conv1(out) |
|
if self.bn == True: |
|
out = self.bn1(out) |
|
|
|
out = self.activation(out) |
|
out = self.conv2(out) |
|
if self.bn == True: |
|
out = self.bn2(out) |
|
|
|
if self.groups > 1: |
|
out = self.conv_merge(out) |
|
|
|
return self.skip_add.add(out, x) |
|
|
|
class FeatureFusionBlock_custom(nn.Module): |
|
"""Feature fusion block.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
activation, |
|
deconv=False, |
|
bn=False, |
|
expand=False, |
|
align_corners=True, |
|
width_ratio=1, |
|
): |
|
"""Init. |
|
Args: |
|
features (int): number of features |
|
""" |
|
super(FeatureFusionBlock_custom, self).__init__() |
|
self.width_ratio = width_ratio |
|
|
|
self.deconv = deconv |
|
self.align_corners = align_corners |
|
|
|
self.groups = 1 |
|
|
|
self.expand = expand |
|
out_features = features |
|
if self.expand == True: |
|
out_features = features // 2 |
|
|
|
self.out_conv = nn.Conv2d( |
|
features, |
|
out_features, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True, |
|
groups=1, |
|
) |
|
|
|
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) |
|
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) |
|
|
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, *xs): |
|
"""Forward pass. |
|
Returns: |
|
tensor: output |
|
""" |
|
output = xs[0] |
|
|
|
if len(xs) == 2: |
|
res = self.resConfUnit1(xs[1]) |
|
if self.width_ratio != 1: |
|
res = F.interpolate(res, size=(output.shape[2], output.shape[3]), mode='bilinear') |
|
|
|
output = self.skip_add.add(output, res) |
|
|
|
|
|
output = self.resConfUnit2(output) |
|
|
|
if self.width_ratio != 1: |
|
|
|
|
|
if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio: |
|
shape = 3 * output.shape[3] |
|
else: |
|
shape = int(self.width_ratio * 2 * output.shape[2]) |
|
output = F.interpolate(output, size=(2* output.shape[2], shape), mode='bilinear') |
|
else: |
|
output = nn.functional.interpolate(output, scale_factor=2, |
|
mode="bilinear", align_corners=self.align_corners) |
|
output = self.out_conv(output) |
|
return output |
|
|
|
def make_fusion_block(features, use_bn, width_ratio=1): |
|
return FeatureFusionBlock_custom( |
|
features, |
|
nn.ReLU(False), |
|
deconv=False, |
|
bn=use_bn, |
|
expand=False, |
|
align_corners=True, |
|
width_ratio=width_ratio, |
|
) |
|
|
|
class Interpolate(nn.Module): |
|
"""Interpolation module.""" |
|
|
|
def __init__(self, scale_factor, mode, align_corners=False): |
|
"""Init. |
|
Args: |
|
scale_factor (float): scaling |
|
mode (str): interpolation mode |
|
""" |
|
super(Interpolate, self).__init__() |
|
|
|
self.interp = nn.functional.interpolate |
|
self.scale_factor = scale_factor |
|
self.mode = mode |
|
self.align_corners = align_corners |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
Args: |
|
x (tensor): input |
|
Returns: |
|
tensor: interpolated data |
|
""" |
|
|
|
x = self.interp( |
|
x, |
|
scale_factor=self.scale_factor, |
|
mode=self.mode, |
|
align_corners=self.align_corners, |
|
) |
|
|
|
return x |
|
|
|
class DPTOutputAdapter(nn.Module): |
|
"""DPT output adapter. |
|
|
|
:param num_cahnnels: Number of output channels |
|
:param stride_level: tride level compared to the full-sized image. |
|
E.g. 4 for 1/4th the size of the image. |
|
:param patch_size_full: Int or tuple of the patch size over the full image size. |
|
Patch size for smaller inputs will be computed accordingly. |
|
:param hooks: Index of intermediate layers |
|
:param layer_dims: Dimension of intermediate layers |
|
:param feature_dim: Feature dimension |
|
:param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression |
|
:param use_bn: If set to True, activates batch norm |
|
:param dim_tokens_enc: Dimension of tokens coming from encoder |
|
""" |
|
|
|
def __init__(self, |
|
num_channels: int = 1, |
|
stride_level: int = 1, |
|
patch_size: Union[int, Tuple[int, int]] = 16, |
|
main_tasks: Iterable[str] = ('rgb',), |
|
hooks: List[int] = [2, 5, 8, 11], |
|
layer_dims: List[int] = [96, 192, 384, 768], |
|
feature_dim: int = 256, |
|
last_dim: int = 32, |
|
use_bn: bool = False, |
|
dim_tokens_enc: Optional[int] = None, |
|
head_type: str = 'regression', |
|
output_width_ratio=1, |
|
**kwargs): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.stride_level = stride_level |
|
self.patch_size = pair(patch_size) |
|
self.main_tasks = main_tasks |
|
self.hooks = hooks |
|
self.layer_dims = layer_dims |
|
self.feature_dim = feature_dim |
|
self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks) if dim_tokens_enc is not None else None |
|
self.head_type = head_type |
|
|
|
|
|
self.P_H = max(1, self.patch_size[0] // stride_level) |
|
self.P_W = max(1, self.patch_size[1] // stride_level) |
|
|
|
self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False) |
|
|
|
self.scratch.refinenet1 = make_fusion_block(feature_dim, use_bn, output_width_ratio) |
|
self.scratch.refinenet2 = make_fusion_block(feature_dim, use_bn, output_width_ratio) |
|
self.scratch.refinenet3 = make_fusion_block(feature_dim, use_bn, output_width_ratio) |
|
self.scratch.refinenet4 = make_fusion_block(feature_dim, use_bn, output_width_ratio) |
|
|
|
if self.head_type == 'regression': |
|
|
|
self.head = nn.Sequential( |
|
nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1), |
|
Interpolate(scale_factor=2, mode="bilinear", align_corners=True), |
|
nn.Conv2d(feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(True), |
|
nn.Conv2d(last_dim, self.num_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
elif self.head_type == 'regression_gs': |
|
self.head = nn.Sequential( |
|
nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1), |
|
|
|
nn.ReLU(True), |
|
|
|
nn.Conv2d(feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(True), |
|
nn.Conv2d(last_dim, self.num_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
elif self.head_type == 'semseg': |
|
|
|
self.head = nn.Sequential( |
|
nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(), |
|
nn.ReLU(True), |
|
nn.Dropout(0.1, False), |
|
nn.Conv2d(feature_dim, self.num_channels, kernel_size=1), |
|
Interpolate(scale_factor=2, mode="bilinear", align_corners=True), |
|
) |
|
else: |
|
raise ValueError('DPT head_type must be "regression" or "semseg".') |
|
|
|
if self.dim_tokens_enc is not None: |
|
self.init(dim_tokens_enc=dim_tokens_enc) |
|
|
|
def init(self, dim_tokens_enc=768): |
|
""" |
|
Initialize parts of decoder that are dependent on dimension of encoder tokens. |
|
Should be called when setting up MultiMAE. |
|
|
|
:param dim_tokens_enc: Dimension of tokens coming from encoder |
|
""" |
|
|
|
|
|
|
|
if isinstance(dim_tokens_enc, int): |
|
dim_tokens_enc = 4 * [dim_tokens_enc] |
|
|
|
self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc] |
|
|
|
self.act_1_postprocess = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=self.dim_tokens_enc[0], |
|
out_channels=self.layer_dims[0], |
|
kernel_size=1, stride=1, padding=0, |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=self.layer_dims[0], |
|
out_channels=self.layer_dims[0], |
|
kernel_size=4, stride=4, padding=0, |
|
bias=True, dilation=1, groups=1, |
|
) |
|
) |
|
|
|
self.act_2_postprocess = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=self.dim_tokens_enc[1], |
|
out_channels=self.layer_dims[1], |
|
kernel_size=1, stride=1, padding=0, |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=self.layer_dims[1], |
|
out_channels=self.layer_dims[1], |
|
kernel_size=2, stride=2, padding=0, |
|
bias=True, dilation=1, groups=1, |
|
) |
|
) |
|
|
|
self.act_3_postprocess = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=self.dim_tokens_enc[2], |
|
out_channels=self.layer_dims[2], |
|
kernel_size=1, stride=1, padding=0, |
|
) |
|
) |
|
|
|
self.act_4_postprocess = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=self.dim_tokens_enc[3], |
|
out_channels=self.layer_dims[3], |
|
kernel_size=1, stride=1, padding=0, |
|
), |
|
nn.Conv2d( |
|
in_channels=self.layer_dims[3], |
|
out_channels=self.layer_dims[3], |
|
kernel_size=3, stride=2, padding=1, |
|
) |
|
) |
|
|
|
self.act_postprocess = nn.ModuleList([ |
|
self.act_1_postprocess, |
|
self.act_2_postprocess, |
|
self.act_3_postprocess, |
|
self.act_4_postprocess |
|
]) |
|
|
|
def adapt_tokens(self, encoder_tokens): |
|
|
|
x = [] |
|
x.append(encoder_tokens[:, :]) |
|
x = torch.cat(x, dim=-1) |
|
return x |
|
|
|
def forward(self, encoder_tokens: List[torch.Tensor], image_size): |
|
|
|
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' |
|
H, W = image_size |
|
|
|
|
|
N_H = H // (self.stride_level * self.P_H) |
|
N_W = W // (self.stride_level * self.P_W) |
|
|
|
|
|
layers = [encoder_tokens[hook] for hook in self.hooks] |
|
|
|
|
|
layers = [self.adapt_tokens(l) for l in layers] |
|
|
|
|
|
layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] |
|
|
|
layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] |
|
|
|
layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] |
|
|
|
|
|
path_4 = self.scratch.refinenet4(layers[3]) |
|
path_3 = self.scratch.refinenet3(path_4, layers[2]) |
|
path_2 = self.scratch.refinenet2(path_3, layers[1]) |
|
path_1 = self.scratch.refinenet1(path_2, layers[0]) |
|
|
|
|
|
out = self.head(path_1) |
|
|
|
return out |
|
|