Yongsen Mao commited on
Commit
1184ec5
β€’
1 Parent(s): f95526f

Update README

Browse files
Files changed (2) hide show
  1. ACKNOWLEDGMENTS.md +52 -0
  2. README.md +37 -0
ACKNOWLEDGMENTS.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Acknowledgments
2
+
3
+ **PySceneKit** would not be possible without the incredible work of various open-source projects and libraries that have paved the way for scene processing and visualization. I want to extend my heartfelt thanks to:
4
+
5
+ ## Libraries
6
+ - **Open3D**: A modern library for 3D data processing. [link](https://www.open3d.org/)
7
+ - **Trimesh**: Trimesh is a pure Python 3.7+ library for loading and using triangular meshes with an emphasis on watertight surfaces. [link](https://trimesh.org/)
8
+ - **PyMeshLab**: PyMeshLab is a Python library that interfaces to MeshLab. [link](https://pymeshlab.readthedocs.io/en/latest/)
9
+ - **Numpy**: NumPy is an open source project that enables numerical computing with Python. [link](https://numpy.org/)
10
+
11
+ ## 2D Scene Understanding Methods
12
+
13
+ ### Depth Estimation
14
+
15
+ - **MiDas**: Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. [link](https://github.com/isl-org/MiDaS)
16
+
17
+ - **Depth Anything V2**: Robust and Accurate Depth Estimation for RGB images. [link](https://github.com/DepthAnything/Depth-Anything-V2)
18
+
19
+ - **Metric3D**: Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image. [link](https://github.com/YvanYin/Metric3D)
20
+
21
+ - **Depth Pro**: Sharp Monocular Metric Depth in Less Than a Second. [link](https://github.com/apple/ml-depth-pro)
22
+
23
+ - **Lotus**: Diffusion-based Visual Foundation Model for High-quality Dense Prediction. [link](https://github.com/EnVision-Research/Lotus)
24
+
25
+ ### Normal Estimation
26
+
27
+ - **DSINE**: Rethinking Inductive Biases for Surface Normal Estimation. [link](https://baegwangbin.github.io/DSINE/)
28
+
29
+ - **StableNormal**: Reducing Diffusion Variance for Stable and Sharp Normal. [link](https://github.com/Stable-X/StableNormal)
30
+
31
+ - **Lotus**: Diffusion-based Visual Foundation Model for High-quality Dense Prediction. [link](https://github.com/EnVision-Research/Lotus)
32
+
33
+ ### Image Segmentation
34
+
35
+ - **OneFormer**: One Transformer to Rule Universal Image Segmentation. [link](https://github.com/SHI-Labs/OneFormer)
36
+
37
+ - **Segment Anything**: A promptable segmentation system with zero-shot generalization to unfamiliar objects and images. [link](https://github.com/facebookresearch/segment-anything)
38
+
39
+ ## 3D Scene Understanding Methods
40
+
41
+ ### Mesh Reconstruction
42
+
43
+ - **DUSt3R**: Geometric 3D Vision Made Easy. [link](https://dust3r.europe.naverlabs.com/)
44
+
45
+ ### Mesh Simplification
46
+
47
+ - **Instant Meshes**: Instant Field-Aligned Meshes. [link](https://github.com/wjakob/instant-meshes)
48
+
49
+ ### Object Detection
50
+
51
+ - **UniDet3D**: Multi-dataset Indoor 3D Object Detection. [link](https://github.com/3dlg-hcvc/unidet3d)
52
+
README.md CHANGED
@@ -1,3 +1,40 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # PySceneKit
6
+
7
+ PySceneKit is an open-source Python library designed for common scene processing and visualization tasks. Whether you're working with 2D or 3D scenes, PySceneKit provides a comprehensive toolkit to help you manipulate, analyze, and visualize your data with ease.
8
+
9
+ ## Introduction
10
+
11
+ Welcome to PySceneKit! This project is fueled by my passion for scene understanding, particularly in indoor environments. Frustrated by the lack of user-friendly tools for processing images and 3D indoor scenes, I often found myself rewriting code for different datasets.
12
+
13
+ PySceneKit aims to simplify scene understanding by providing an intuitive toolkit that incorporates both state-of-the-art techniques and classic methods tailored for indoor scenes. I warmly welcome contributions from fellow enthusiasts and researchers to help make this project a valuable resource for everyone!
14
+
15
+ ## Progress
16
+
17
+ - [x] 🌟 **Kicking Off the Adventure**: Initial setup complete!
18
+ - [ ] πŸ’‘ **Bringing Ideas to Life**: Core functionalities in the works.
19
+ - [ ] 🎨 **Crafting Beautiful Scenes**: Building basic scene processing features.
20
+ - [ ] πŸ” **Visual Wonderland**: Adding stunning visualization tools.
21
+ - [ ] πŸ“š **Sharing the Love**: Writing documentation and creating examples.
22
+ - [ ] πŸ”§ **Polishing the Gem**: Testing and optimizing for the best performance.
23
+ - [ ] πŸš€ **Launch Countdown**: Preparing for the exciting release of v1.0!
24
+
25
+
26
+ ## Acknowledgments
27
+
28
+ PySceneKit would not be possible without the incredible work of various open-source projects and libraries that have paved the way for scene processing and visualization. For a detailed list of acknowledgments, please see the [ACKNOWLEDGMENTS.md](./ACKNOWLEDGMENTS.md) file.
29
+
30
+ ## Citation
31
+
32
+ If you find PySceneKit useful in your research, please consider citing the project:
33
+
34
+ ```bibtex
35
+ @misc{mao2024pyscenekit,
36
+ title={PySceneKit GitHub Repository},
37
+ author={Mao, Yongsen},
38
+ year={2024}
39
+ }
40
+ ```