ppo-LunarLander-v2 / config.json
yuanzi1983918's picture
Upload PPO LunarLander-v2 trained agent
eac62a7
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8c201a9990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8c201a9a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8c201a9ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8c201a9b40>", "_build": "<function ActorCriticPolicy._build at 0x7d8c201a9bd0>", "forward": "<function ActorCriticPolicy.forward at 0x7d8c201a9c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d8c201a9cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8c201a9d80>", "_predict": "<function ActorCriticPolicy._predict at 0x7d8c201a9e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8c201a9ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8c201a9f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d8c201a9fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8c201b4800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690047758145742263, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zsb0pqAK6y3lSudyN9rR9iOA62O9+OAAAgD8AAAAAzXXqvMNJNLpH6IA6dysntmAAVzvm8Za5AACAPwAAgD9N8Ty9csmqP3IzQr5LIu2+eG+VvQVLqjsAAAAAAAAAALO8er336mw+8AbhPeC/Nb7g92c9Zj2BvQAAAAAAAAAATbg9PcokhT/rtq09ymK5vl41gD0+Ptu8AAAAAAAAAAAzC5w9w80BungzgLuFjWA4m8imO04PEzoAAIA/AACAPzNzojy4xve5xjjjuon7erSvS5q4Cs0EOgAAgD8AAIA/M9f+u/bkLbqvr5a7TLmltja/LjnfEBU2AACAPwAAgD9m/Zm87FH1uWCwCriz8tiymP/lOtMlIDcAAIA/AACAP4CBj70UiIi6TIDFN4nw1zLaoGO6aoXjtgAAgD8AAIA/ACwWvY9OOrpGKcE6wh/YNQe/q7miruK5AACAPwAAgD/aKJK99tRYuu77nLUtaBmw/E5BO/QxqzQAAIA/AACAPwDESL1Ii4a6bvGfPJt5iDySl0878m9tvQAAgD8AAIA/mrmyvbgW/7nVDvE4TLtuNErxHjp09w24AACAPwAAgD/mQSI91wM5uT5RiLccnyGyW6s0O8rOoDYAAIA/AACAP82s5rzDEQO6xy4kOKt6CDMv2Io6OdA9twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMILzf779CMAWyUTegDjAF0lEdAo344ptrKvHV9lChoBkdAZADVo6CDmWgHTegDaAhHQKN/YCwr1/V1fZQoaAZHQGSGJYDDCP9oB03oA2gIR0CjgclUZNwjdX2UKGgGR0Bonub7TDwZaAdN6ANoCEdAo4M5KSPluHV9lChoBkdAYpCqn3ta6mgHTegDaAhHQKODWvIOpbV1fZQoaAZHQGVBOTRplBhoB03oA2gIR0CjhHPaDf3wdX2UKGgGR0BgbpVENOM3aAdN6ANoCEdAo4Ut3np0OnV9lChoBkdAcjBe+23KCGgHTZEBaAhHQKOIVTIeYD11fZQoaAZHQGdn51eSjg1oB03oA2gIR0CjlmkU0vXcdX2UKGgGR0Bl97jm0VrRaAdN6ANoCEdAo5afNA1NxnV9lChoBkdATcKBy0a6z2gHTRgBaAhHQKOZxqu8sc11fZQoaAZHQGP5Rbr1M/RoB03oA2gIR0CjmfP+n62wdX2UKGgGR0BimF4qwyIpaAdN6ANoCEdAo5taKaXrt3V9lChoBkdAZ3AVbA1vVGgHTegDaAhHQKOcAU0Nz8x1fZQoaAZHQGBh4lpoK2NoB03oA2gIR0CjoIAow22odX2UKGgGR0BhrnBvaURnaAdN6ANoCEdAo6DEulGgBnV9lChoBkdAcqegFotcwGgHTXcBaAhHQKOgxX7Lt/p1fZQoaAZHQGUr8eS0Sh9oB03oA2gIR0CjonP07KaHdX2UKGgGR0Blca88La24aAdN6ANoCEdAo6K/PiT+vXV9lChoBkdAZdXbdJrckGgHTegDaAhHQKOj2gctGut1fZQoaAZHQGStHd43WFxoB03oA2gIR0Cjpl17x/d7dX2UKGgGR0BhHQLw4KhMaAdN6ANoCEdAo6hB1xKg7HV9lChoBkdAY9SDKYAsCmgHTegDaAhHQKOochgVoHt1fZQoaAZHQG/J3qqwQlNoB00bAmgIR0CjqWWeg+QmdX2UKGgGR0BlxUTtb9qDaAdN6ANoCEdAo6nYAyVObnV9lChoBkdAY/PRYRujymgHTegDaAhHQKOqlceKba11fZQoaAZHQEIMNOuaF25oB0vdaAhHQKOs5XvH93t1fZQoaAZHQGAAdOZb6gxoB03oA2gIR0CjuzFTm4iHdX2UKGgGR0Bnjnkmx+rmaAdN6ANoCEdAo77gIOYplXV9lChoBkdAYrHY287IUGgHTegDaAhHQKPBSrRSgoR1fZQoaAZHQGXZRgqmTDBoB03oA2gIR0CjwfSjQAuJdX2UKGgGR0BvOwiqyWzGaAdNVAFoCEdAo8YT+m3vyHV9lChoBkdAYtOJtSAH3WgHTegDaAhHQKPGk8KXv6V1fZQoaAZHQGM7skIHC41oB03oA2gIR0CjxtRW912adX2UKGgGR0BhpTdUKiPAaAdN6ANoCEdAo8bVrGipN3V9lChoBkdAZJ2rCFbml2gHTegDaAhHQKPIVyNn5BV1fZQoaAZHQGeGehGpdbBoB03oA2gIR0CjyJvacqe9dX2UKGgGR0Bkl9HlOoHcaAdN6ANoCEdAo8mXpbD/EXV9lChoBkdAZWrT+ee4C2gHTegDaAhHQKPM58E3bVV1fZQoaAZHQGDXEleF+NNoB03oA2gIR0CjzQgKF7D3dX2UKGgGR0BfwJIxxkupaAdN6ANoCEdAo82qA8Swn3V9lChoBkdAYPlFBIFvAGgHTegDaAhHQKPOECEpRXR1fZQoaAZHQGSLRFiKBNFoB03oA2gIR0Cjzsjx0+1SdX2UKGgGR0BjhNkc0cfeaAdN6ANoCEdAo9EExEfDDXV9lChoBkdAaUj2criEQGgHTegDaAhHQKPjUpOvdM11fZQoaAZHQF26ASnLq2VoB03oA2gIR0Cj5PqO938odX2UKGgGR0BjP3sqril0aAdN6ANoCEdAo+We5DqnnHV9lChoBkdAb0pg5zYEn2gHTQkCaAhHQKPo01aW5Yp1fZQoaAZHQGgciVrylN1oB03oA2gIR0Cj6XYGdI5HdX2UKGgGR0Bu5uWUr08OaAdN2ANoCEdAo+mD2i+L33V9lChoBkdAZXlQvYe1bGgHTegDaAhHQKPqHhsImgJ1fZQoaAZHQGYn9Jaq0dBoB03oA2gIR0Cj6h7wrlNldX2UKGgGR0Bi+wNmUW2xaAdN6ANoCEdAo+uELWqcVnV9lChoBkdAZUb+ERJ2+2gHTegDaAhHQKPrw41gpjN1fZQoaAZHQGESMrmQr+ZoB03oA2gIR0Cj7KpPIn0DdX2UKGgGR0BkIfbsWweOaAdN6ANoCEdAo/DWgHu7YnV9lChoBkdAYVl1DjR2KWgHTegDaAhHQKPw97tRekZ1fZQoaAZHQGV5a/Zdv89oB03oA2gIR0Cj8Zfe+Eh8dX2UKGgGR0BhweVxCIDYaAdN6ANoCEdAo/IJWaMJhXV9lChoBkdAZuBda+vhZWgHTegDaAhHQKPyxBwdbPh1fZQoaAZHQFJVkMTewcJoB0u/aAhHQKP1hgH/tIF1fZQoaAZHQHAtj5GjKxNoB00nAWgIR0Cj+Fb/wRXfdX2UKGgGR0BwJZLK3d9EaAdNZwJoCEdApAPyp97Wu3V9lChoBkdAaf1MPjGT92gHTegDaAhHQKQF2G0u14R1fZQoaAZHQGIK2Vu76HloB03oA2gIR0CkCA00vXbudX2UKGgGR0BiW5AKOT7maAdN6ANoCEdApAjSY5T6znV9lChoBkdAZASiPhhpg2gHTegDaAhHQKQMHN/OMVF1fZQoaAZHQGIGGz8gpz9oB03oA2gIR0CkDM9JjDsMdX2UKGgGR0Bl1z2lEZzgaAdN6ANoCEdApAzdpblijXV9lChoBkdAYSrLdvbXYmgHTegDaAhHQKQNfpA2Q4l1fZQoaAZHQGOvwRoRIz5oB03oA2gIR0CkDX++M6zWdX2UKGgGR0Bmnlb5dnkDaAdN6ANoCEdApA9Cpm29c3V9lChoBkdAYeUc6NlyzWgHTegDaAhHQKQQS6EJ0GN1fZQoaAZHQGyO+fZmI0toB02PA2gIR0CkE42oegctdX2UKGgGR0BwjiQ4jrzHaAdNKQFoCEdApBRcP8Q7LnV9lChoBkdAZ7qW2PT5PGgHTegDaAhHQKQUtYAbQ1J1fZQoaAZHQFwwlQ/HHWBoB03oA2gIR0CkFShfShJzdX2UKGgGR0BhldFH8TBZaAdN6ANoCEdApBkBo24usnV9lChoBkdAYAr52yLQ5WgHTegDaAhHQKQcLyhi9Zl1fZQoaAZHQFCOVclgMMJoB0vJaAhHQKQflfDUExJ1fZQoaAZHQGSpgm7aqS5oB03oA2gIR0CkIMkNFz+4dX2UKGgGR0Bkd1WMju8caAdN6ANoCEdApCqjKcNH6XV9lChoBkdAYLQnyd4FA2gHTegDaAhHQKQsI+HrQgN1fZQoaAZHQF6XBYFJQLxoB03oA2gIR0CkLMpjUd7wdX2UKGgGR0BwQ8mICU5daAdNFQJoCEdApC0dsSCe3HV9lChoBkdAY0Hj7Q9idGgHTegDaAhHQKQv+Qrc0tR1fZQoaAZHQGMUBYNiH7BoB03oA2gIR0CkMKbah6BzdX2UKGgGR0Bo7PQhOgxraAdN6ANoCEdApDFbMkhRqHV9lChoBkdAZnmEt/WlM2gHTegDaAhHQKQxW9fTkQx1fZQoaAZHQGD4bpV0cOtoB03oA2gIR0CkMzBN21UmdX2UKGgGR0Boz+J+DvmYaAdN6ANoCEdApDRAnjQzDXV9lChoBkdAbO7YukDZDmgHTZcBaAhHQKQ4cTTvy9V1fZQoaAZHQHAB4njQzDZoB01TAmgIR0CkOMg6Mir1dX2UKGgGR0Bnny6cy31BaAdN6ANoCEdApDjWxD9fkXV9lChoBkdAaMjNhVlwtWgHTegDaAhHQKQ5j6KtPpJ1fZQoaAZHQGWOItUXHipoB03oA2gIR0CkOeEg4ffXdX2UKGgGR0BLun93r2QGaAdL6WgIR0CkPvvmozeodX2UKGgGR0BkxlCLMs6JaAdN6ANoCEdApEFK5LAYYXV9lChoBkdAbwLYRNATqWgHTa4BaAhHQKREjRvWH1x1fZQoaAZHQGa/0IToMa1oB03oA2gIR0CkRTHIhhYvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}