Upload run_autoawq.py
Browse files- run_autoawq.py +111 -0
run_autoawq.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Tested on: transformers==4.38.1, autoawq=0.2.3
|
| 3 |
+
Run on 1 card (mem>=18G)
|
| 4 |
+
'''
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from awq.quantize.quantizer import AwqQuantizer
|
| 9 |
+
from awq.quantize.quantizer import *
|
| 10 |
+
from awq import AutoAWQForCausalLM
|
| 11 |
+
from transformers import AutoTokenizer
|
| 12 |
+
from unittest.mock import patch
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class FalconAwqQuantizer(AwqQuantizer):
|
| 16 |
+
def quantize(self):
|
| 17 |
+
print('Patched!')
|
| 18 |
+
for i in tqdm(range(len(self.modules)), desc="AWQ"):
|
| 19 |
+
# Move module and inputs to correct device
|
| 20 |
+
common_device = next(self.modules[i].parameters()).device
|
| 21 |
+
if common_device is None or str(common_device) == "cpu":
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
best_device = "cuda:" + str(i % torch.cuda.device_count())
|
| 24 |
+
else:
|
| 25 |
+
best_device = get_best_device()
|
| 26 |
+
|
| 27 |
+
self.modules[i] = self.modules[i].to(best_device)
|
| 28 |
+
common_device = next(self.modules[i].parameters()).device
|
| 29 |
+
|
| 30 |
+
if self.module_kwargs.get("position_ids") is not None:
|
| 31 |
+
self.module_kwargs["position_ids"] = self.module_kwargs[
|
| 32 |
+
"position_ids"
|
| 33 |
+
].to(common_device)
|
| 34 |
+
|
| 35 |
+
if self.module_kwargs.get("attention_mask") is not None:
|
| 36 |
+
self.module_kwargs["attention_mask"] = self.module_kwargs[
|
| 37 |
+
"attention_mask"
|
| 38 |
+
].to(common_device)
|
| 39 |
+
|
| 40 |
+
# include alibi
|
| 41 |
+
if self.module_kwargs.get("alibi") is not None:
|
| 42 |
+
self.module_kwargs["alibi"] = self.module_kwargs[
|
| 43 |
+
"alibi"
|
| 44 |
+
].to(common_device)
|
| 45 |
+
else:
|
| 46 |
+
self.module_kwargs['alibi'] = None
|
| 47 |
+
print(f'alibi=None in layer {i}, this is expected if use_alibi=False.')
|
| 48 |
+
|
| 49 |
+
self.inps = self.inps.to(common_device)
|
| 50 |
+
|
| 51 |
+
# [STEP 1]: Get layer, extract linear modules, extract input features
|
| 52 |
+
named_linears = get_named_linears(self.modules[i])
|
| 53 |
+
|
| 54 |
+
# Filter out the linear layers we don't want to exclude
|
| 55 |
+
named_linears = exclude_layers_to_not_quantize(
|
| 56 |
+
named_linears, self.modules_to_not_convert
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
input_feat = self._get_input_feat(self.modules[i], named_linears)
|
| 60 |
+
clear_memory()
|
| 61 |
+
|
| 62 |
+
# [STEP 2]: Compute and apply scale list
|
| 63 |
+
module_config: List[Dict] = self.awq_model.get_layers_for_scaling(
|
| 64 |
+
self.modules[i], input_feat, self.module_kwargs
|
| 65 |
+
)
|
| 66 |
+
scales_list = [
|
| 67 |
+
self._search_best_scale(self.modules[i], **layer)
|
| 68 |
+
for layer in module_config
|
| 69 |
+
]
|
| 70 |
+
apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
|
| 71 |
+
scales_list = append_str_prefix(
|
| 72 |
+
scales_list, get_op_name(self.model, self.modules[i]) + "."
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# [STEP 3]: Compute and apply clipping list
|
| 76 |
+
clip_list = self._search_best_clip(
|
| 77 |
+
self.modules[i], named_linears, input_feat
|
| 78 |
+
)
|
| 79 |
+
apply_clip(self.modules[i], clip_list)
|
| 80 |
+
clip_list = append_str_prefix(
|
| 81 |
+
clip_list, get_op_name(self.model, self.modules[i]) + "."
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# [STEP 4]: Quantize weights
|
| 85 |
+
if not self.export_compatible:
|
| 86 |
+
self._apply_quant(self.modules[i], named_linears)
|
| 87 |
+
|
| 88 |
+
clear_memory()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
model_path = 'tiiuae/falcon-40b'
|
| 92 |
+
# model_path = 'yujiepan/falcon-new-tiny-random'
|
| 93 |
+
quant_path = 'falcon-40b-autoawq-w4g128'
|
| 94 |
+
quant_config = {"zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM"}
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# Load model
|
| 98 |
+
model = AutoAWQForCausalLM.from_pretrained(
|
| 99 |
+
model_path, device_map='cpu', trust_remote_code=False, **{"low_cpu_mem_usage": True, "use_cache": False}
|
| 100 |
+
)
|
| 101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 102 |
+
|
| 103 |
+
# Quantize
|
| 104 |
+
with patch('awq.models.base.AwqQuantizer', FalconAwqQuantizer):
|
| 105 |
+
model.quantize(tokenizer, quant_config=quant_config)
|
| 106 |
+
|
| 107 |
+
# Save quantized model
|
| 108 |
+
model.save_quantized(quant_path)
|
| 109 |
+
tokenizer.save_pretrained(quant_path)
|
| 110 |
+
|
| 111 |
+
print(f'Model is quantized and saved at "{quant_path}"')
|