Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
133 items
•
Updated
•
6
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from LiquidAI/LFM2-8B-A1B.
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_id = "yujiepan/lfm2-moe-tiny-random"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
dtype="bfloat16",
trust_remote_code=True,
attn_implementation="flash_attention_2",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Generate answer
prompt="What is AI?"
input_ids=tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
).to(model.device)
output=model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=32,
)
print(tokenizer.decode(output[0], skip_special_tokens=False))
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "LiquidAI/LFM2-8B-A1B"
save_folder = "/tmp/yujiepan/lfm2-moe-tiny-random"
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 64
config_json['intermediate_size'] = 128
config_json['layer_types'] = ['conv', 'conv', 'full_attention']
config_json['moe_intermediate_size'] = 128
config_json['num_dense_layers'] = 2
config_json['num_attention_heads'] = 2
config_json['num_hidden_layers'] = 3
config_json['num_key_value_heads'] = 1
config_json['use_cache'] = True
# config_json['tie_word_embeddings'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
Lfm2MoeForCausalLM(
(model): Lfm2MoeModel(
(embed_tokens): Embedding(65536, 64, padding_idx=0)
(layers): ModuleList(
(0-1): 2 x Lfm2MoeDecoderLayer(
(conv): Lfm2MoeShortConv(
(conv): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), groups=64, bias=False)
(in_proj): Linear(in_features=64, out_features=192, bias=False)
(out_proj): Linear(in_features=64, out_features=64, bias=False)
)
(feed_forward): Lfm2MoeMLP(
(w1): Linear(in_features=64, out_features=128, bias=False)
(w3): Linear(in_features=64, out_features=128, bias=False)
(w2): Linear(in_features=128, out_features=64, bias=False)
)
(operator_norm): Lfm2MoeRMSNorm((64,), eps=1e-05)
(ffn_norm): Lfm2MoeRMSNorm((64,), eps=1e-05)
)
(2): Lfm2MoeDecoderLayer(
(self_attn): Lfm2MoeAttention(
(q_proj): Linear(in_features=64, out_features=64, bias=False)
(k_proj): Linear(in_features=64, out_features=32, bias=False)
(v_proj): Linear(in_features=64, out_features=32, bias=False)
(out_proj): Linear(in_features=64, out_features=64, bias=False)
(q_layernorm): Lfm2MoeRMSNorm((32,), eps=1e-05)
(k_layernorm): Lfm2MoeRMSNorm((32,), eps=1e-05)
)
(feed_forward): Lfm2MoeSparseMoeBlock(
(gate): Linear(in_features=64, out_features=32, bias=False)
(experts): Lfm2MoeExperts(
(0-31): 32 x Lfm2MoeMLP(
(w1): Linear(in_features=64, out_features=128, bias=False)
(w3): Linear(in_features=64, out_features=128, bias=False)
(w2): Linear(in_features=128, out_features=64, bias=False)
)
)
)
(operator_norm): Lfm2MoeRMSNorm((64,), eps=1e-05)
(ffn_norm): Lfm2MoeRMSNorm((64,), eps=1e-05)
)
)
(pos_emb): Lfm2MoeRotaryEmbedding()
(embedding_norm): Lfm2MoeRMSNorm((64,), eps=1e-05)
)
(lm_head): Linear(in_features=64, out_features=65536, bias=False)
)
Base model
LiquidAI/LFM2-8B-A1B