--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is randomly initialized, using the config from [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) but with smaller size. Note the model is in float16. Codes: ```python import transformers import torch import os from huggingface_hub import create_repo, upload_folder source_model_id = 'microsoft/Phi-3-mini-128k-instruct' save_path = '/tmp/yujiepan/phi-3-tiny-random' repo_id = 'yujiepan/phi-3-tiny-random' config = transformers.AutoConfig.from_pretrained( source_model_id, trust_remote_code=True) config.hidden_size = 16 config.intermediate_size = 32 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.num_key_value_heads = 4 config.rope_scaling['long_factor'] = [1.0299, 1.0499] config.rope_scaling['short_factor'] = [1.05, 1.05] model = transformers.AutoModelForCausalLM.from_config( config, trust_remote_code=True) model = model.to(torch.float16) model.save_pretrained(save_path) tokenizer = transformers.AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True) tokenizer.save_pretrained(save_path) result = transformers.pipelines.pipeline( 'text-generation', model=model.float(), tokenizer=tokenizer)('Hello') print(result) os.system(f'ls -alh {save_path}') create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path) from transformers import AutoProcessor AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True).push_to_hub(repo_id) ```