File size: 15,323 Bytes
13226fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" YuLanMinimodel configuration"""

import math

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

YULANMINI_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class YuLanMiniConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`YuLanMiniModel`]. It is used to instantiate an YuLanMini
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the YuLanMini-7B.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the YuLanMinimodel. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`YuLanMiniModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. YuLanMini1 supports up to 2048 tokens,
            YuLanMini2 up to 4096, CodeYuLanMiniup to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
            necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
            issue](https://github.com/pytorch/pytorch/issues/76232).
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalYuLanMini/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import YuLanMiniModel, YuLanMiniConfig

    >>> # Initializing a YuLanMini-7b style configuration
    >>> configuration = YuLanMiniConfig()

    >>> # Initializing a model from the YuLanMini-7b style configuration
    >>> model = YuLanMiniModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "yulanmini"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=99000,
        hidden_size=1920,
        intermediate_size=4800,
        num_hidden_layers=56,
        num_attention_heads=30,
        num_key_value_heads=6,

        # 不常用变量
        hidden_act="silu",
        max_position_embeddings=4096,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,  # /home/u20140041/pretrain-mini/preprocess/modify_tokenizer/1731
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        use_sliding_window=False,
        sliding_window=4096,
        rope_scaling=None,
        attention_bias=True,  # qwen
        attention_dropout=0.0,
        # 放缩embedding grad
        shrink_alpha=1,
        shrink_alpha2=1,
        use_liger=False,
        # 初始化
        initializer_range=0.014434,
        init_scale_o=10.582218,
        model_reproduce="transformer",
        # 下面是为了muparam设置的参数,需要保证:默认值是不使用任何muparam的部分
        hidden_states_shrink=1,
        dim_model_base=None,
        dim_ffn_base_init=None,  # 新版muparam没有使用了
        dim_model_base_init=None,
        dim_model_base_attn=None,
        dim_model_base_lmh=None,
        dim_model_base_logits=None,
        dim_model_base_lr=None,
        scale_emb=1,
        # qk_layernorm
        qk_layernorm=False,
        layer_norm_eps=1e-6,
        embedding_ln=False,
        embedding_rmsln=False,
        ln_scale=1.,
        z_loss=0.0001,
        # wesar
        wesar_weights=True,
        embed_tokens_alpha=1,
        q_proj_alpha=1,
        k_proj_alpha=1,
        v_proj_alpha=1,
        o_proj_alpha=1,
        down_proj_alpha=1,
        gate_up_proj_alpha=1,
        input_layernorm_alpha=1,
        post_attention_layernorm_alpha=1,
        norm_alpha=1,
        lm_head_alpha=1,
        use_norm_alpha=True,
        use_emb_alpha=False,
        rms_type="llama",
        num_steps_trained_before_this_epoch=0,
        num_epochs_trained_before_this_epoch=0,
        # 加速
        gradient_checkpointing_step=7,
        **kwargs,
    ):
        # 训练states,每个epoch更新,epoch内部不会变。比如训练到第4轮数据,这两个的值都是第三轮最后一步的值(epochs=3, steps=xxx),只要是在第4轮,无论是多少步,都是第三轮的值,由update_trained_steps_and_epochs控制是否更新
        self.num_steps_trained_before_this_epoch = num_steps_trained_before_this_epoch
        self.num_epochs_trained_before_this_epoch = num_epochs_trained_before_this_epoch

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window if use_sliding_window else None

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.shrink_alpha = shrink_alpha
        self.use_liger = use_liger
        self.init_scale_o = init_scale_o
        self.hidden_states_shrink = 1 / math.sqrt(num_hidden_layers) if hidden_states_shrink == "muparam" else hidden_states_shrink
        self.dim_model_base = dim_model_base if dim_model_base is not None else hidden_size
        self.dim_model_base_init = dim_model_base_init
        self.dim_model_base_attn = dim_model_base_attn if dim_model_base_attn is not None else (hidden_size // num_attention_heads)  # 初始化为1则是使用1/H_dim
        self.dim_model_base_lmh = dim_model_base_lmh if dim_model_base_lmh is not None else 1  # 初始化为1则是不放缩lm_head的init
        self.scale_emb = scale_emb if scale_emb is not None else 1
        self.model_reproduce=model_reproduce if model_reproduce is not None else "transformer"
        self.dim_model_base_logits = dim_model_base_logits if dim_model_base_logits is not None else hidden_size
        self.dim_model_base_lr = dim_model_base_lr if dim_model_base_lr is not None else hidden_size

        self.qk_layernorm = qk_layernorm
        self.layer_norm_eps = layer_norm_eps
        self.embedding_ln = embedding_ln
        self.embedding_rmsln = embedding_rmsln
        self.ln_scale = ln_scale
        self.z_loss = z_loss

        if embedding_ln and embedding_rmsln:
            raise ValueError("Only one of embedding_ln and embedding_rmsln should be True")

        self.wesar_weights = wesar_weights
        self.embed_tokens_alpha = embed_tokens_alpha
        self.q_proj_alpha = q_proj_alpha
        self.k_proj_alpha = k_proj_alpha
        self.v_proj_alpha = v_proj_alpha
        self.o_proj_alpha = o_proj_alpha
        self.down_proj_alpha = down_proj_alpha
        self.gate_up_proj_alpha = gate_up_proj_alpha
        self.input_layernorm_alpha = input_layernorm_alpha
        self.post_attention_layernorm_alpha = post_attention_layernorm_alpha
        self.norm_alpha = norm_alpha
        self.lm_head_alpha = lm_head_alpha
        self.use_norm_alpha = use_norm_alpha
        self.use_emb_alpha = use_emb_alpha
        self.rms_type = rms_type

        self.gradient_checkpointing_step = gradient_checkpointing_step

        if self.dim_model_base != hidden_size or self.dim_model_base_init is not None or self.dim_model_base_attn != (hidden_size // num_attention_heads) or self.dim_model_base_lmh != 1:
            if init_scale_o != 1:
                raise ValueError("When using muparam, init_scale_o should be 1")

        # multiplier
        print("Attention放缩:", math.sqrt(self.dim_model_base_attn) / (hidden_size // num_attention_heads))
        print("Residual链接处的Hidden States放缩:", hidden_states_shrink)
        print("Logits放缩:", 1 / (hidden_size / self.dim_model_base))

        # initializer
        if dim_model_base_init is not None:
            print("o_proj,down_proj初始化STD:", initializer_range / math.sqrt(2 * (hidden_size / dim_model_base_init) * num_hidden_layers))
            print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range / math.sqrt(self.hidden_size / self.dim_model_base_init))
        else:
            print("o_proj,down_proj初始化STD:", initializer_range / init_scale_o)
            print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range)
        print("lm_head初始化STD:", initializer_range / math.sqrt(self.dim_model_base_lmh))

        if not tie_word_embeddings and self.scale_emb != 1:
            raise ValueError("When using scale_emb, tie_word_embeddings should be False")

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        try:
            import flash_attn
            self._attn_implementation = "flash_attention_2"
        except:
            pass

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
            raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")