File size: 15,323 Bytes
13226fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" YuLanMinimodel configuration"""
import math
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
YULANMINI_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class YuLanMiniConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`YuLanMiniModel`]. It is used to instantiate an YuLanMini
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the YuLanMini-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the YuLanMinimodel. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`YuLanMiniModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. YuLanMini1 supports up to 2048 tokens,
YuLanMini2 up to 4096, CodeYuLanMiniup to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalYuLanMini/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import YuLanMiniModel, YuLanMiniConfig
>>> # Initializing a YuLanMini-7b style configuration
>>> configuration = YuLanMiniConfig()
>>> # Initializing a model from the YuLanMini-7b style configuration
>>> model = YuLanMiniModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "yulanmini"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=99000,
hidden_size=1920,
intermediate_size=4800,
num_hidden_layers=56,
num_attention_heads=30,
num_key_value_heads=6,
# 不常用变量
hidden_act="silu",
max_position_embeddings=4096,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None, # /home/u20140041/pretrain-mini/preprocess/modify_tokenizer/1731
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
rope_scaling=None,
attention_bias=True, # qwen
attention_dropout=0.0,
# 放缩embedding grad
shrink_alpha=1,
shrink_alpha2=1,
use_liger=False,
# 初始化
initializer_range=0.014434,
init_scale_o=10.582218,
model_reproduce="transformer",
# 下面是为了muparam设置的参数,需要保证:默认值是不使用任何muparam的部分
hidden_states_shrink=1,
dim_model_base=None,
dim_ffn_base_init=None, # 新版muparam没有使用了
dim_model_base_init=None,
dim_model_base_attn=None,
dim_model_base_lmh=None,
dim_model_base_logits=None,
dim_model_base_lr=None,
scale_emb=1,
# qk_layernorm
qk_layernorm=False,
layer_norm_eps=1e-6,
embedding_ln=False,
embedding_rmsln=False,
ln_scale=1.,
z_loss=0.0001,
# wesar
wesar_weights=True,
embed_tokens_alpha=1,
q_proj_alpha=1,
k_proj_alpha=1,
v_proj_alpha=1,
o_proj_alpha=1,
down_proj_alpha=1,
gate_up_proj_alpha=1,
input_layernorm_alpha=1,
post_attention_layernorm_alpha=1,
norm_alpha=1,
lm_head_alpha=1,
use_norm_alpha=True,
use_emb_alpha=False,
rms_type="llama",
num_steps_trained_before_this_epoch=0,
num_epochs_trained_before_this_epoch=0,
# 加速
gradient_checkpointing_step=7,
**kwargs,
):
# 训练states,每个epoch更新,epoch内部不会变。比如训练到第4轮数据,这两个的值都是第三轮最后一步的值(epochs=3, steps=xxx),只要是在第4轮,无论是多少步,都是第三轮的值,由update_trained_steps_and_epochs控制是否更新
self.num_steps_trained_before_this_epoch = num_steps_trained_before_this_epoch
self.num_epochs_trained_before_this_epoch = num_epochs_trained_before_this_epoch
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.shrink_alpha = shrink_alpha
self.use_liger = use_liger
self.init_scale_o = init_scale_o
self.hidden_states_shrink = 1 / math.sqrt(num_hidden_layers) if hidden_states_shrink == "muparam" else hidden_states_shrink
self.dim_model_base = dim_model_base if dim_model_base is not None else hidden_size
self.dim_model_base_init = dim_model_base_init
self.dim_model_base_attn = dim_model_base_attn if dim_model_base_attn is not None else (hidden_size // num_attention_heads) # 初始化为1则是使用1/H_dim
self.dim_model_base_lmh = dim_model_base_lmh if dim_model_base_lmh is not None else 1 # 初始化为1则是不放缩lm_head的init
self.scale_emb = scale_emb if scale_emb is not None else 1
self.model_reproduce=model_reproduce if model_reproduce is not None else "transformer"
self.dim_model_base_logits = dim_model_base_logits if dim_model_base_logits is not None else hidden_size
self.dim_model_base_lr = dim_model_base_lr if dim_model_base_lr is not None else hidden_size
self.qk_layernorm = qk_layernorm
self.layer_norm_eps = layer_norm_eps
self.embedding_ln = embedding_ln
self.embedding_rmsln = embedding_rmsln
self.ln_scale = ln_scale
self.z_loss = z_loss
if embedding_ln and embedding_rmsln:
raise ValueError("Only one of embedding_ln and embedding_rmsln should be True")
self.wesar_weights = wesar_weights
self.embed_tokens_alpha = embed_tokens_alpha
self.q_proj_alpha = q_proj_alpha
self.k_proj_alpha = k_proj_alpha
self.v_proj_alpha = v_proj_alpha
self.o_proj_alpha = o_proj_alpha
self.down_proj_alpha = down_proj_alpha
self.gate_up_proj_alpha = gate_up_proj_alpha
self.input_layernorm_alpha = input_layernorm_alpha
self.post_attention_layernorm_alpha = post_attention_layernorm_alpha
self.norm_alpha = norm_alpha
self.lm_head_alpha = lm_head_alpha
self.use_norm_alpha = use_norm_alpha
self.use_emb_alpha = use_emb_alpha
self.rms_type = rms_type
self.gradient_checkpointing_step = gradient_checkpointing_step
if self.dim_model_base != hidden_size or self.dim_model_base_init is not None or self.dim_model_base_attn != (hidden_size // num_attention_heads) or self.dim_model_base_lmh != 1:
if init_scale_o != 1:
raise ValueError("When using muparam, init_scale_o should be 1")
# multiplier
print("Attention放缩:", math.sqrt(self.dim_model_base_attn) / (hidden_size // num_attention_heads))
print("Residual链接处的Hidden States放缩:", hidden_states_shrink)
print("Logits放缩:", 1 / (hidden_size / self.dim_model_base))
# initializer
if dim_model_base_init is not None:
print("o_proj,down_proj初始化STD:", initializer_range / math.sqrt(2 * (hidden_size / dim_model_base_init) * num_hidden_layers))
print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range / math.sqrt(self.hidden_size / self.dim_model_base_init))
else:
print("o_proj,down_proj初始化STD:", initializer_range / init_scale_o)
print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range)
print("lm_head初始化STD:", initializer_range / math.sqrt(self.dim_model_base_lmh))
if not tie_word_embeddings and self.scale_emb != 1:
raise ValueError("When using scale_emb, tie_word_embeddings should be False")
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
try:
import flash_attn
self._attn_implementation = "flash_attention_2"
except:
pass
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|