Update README
Browse files
README.md
CHANGED
@@ -1,3 +1,108 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# IMPORTANT NOTICE: THIS IS AN INTERMEDIATE CHECKPOINT, NOT THE FINAL MODEL
|
6 |
+
|
7 |
+
Both [**YuLan-Mini**](https://huggingface.co/yulan-team/YuLan-Mini) and **YuLan-Mini-Intermediate-4K** were trained starting from this checkpoint.
|
8 |
+
|
9 |
+
This version includes the optimizer, allowing you to resume training using the Hugging Face Trainer and DeepSpeed Universal Checkpoint.
|
10 |
+
|
11 |
+
## Continual Training Tutorial
|
12 |
+
|
13 |
+
### Step 1: Modify the `config.json`
|
14 |
+
|
15 |
+
Due to the implementation of Hugging Face Trainer, certain parameters are stored in the `config.json` file and cannot be modified through the Trainer's command-line arguments. Therefore, you need to update these parameters in the `config.json` file first, particularly:
|
16 |
+
|
17 |
+
- **`save_steps`**: The frequency of saving intermediate checkpoints.
|
18 |
+
- **`train_batch_size`**: The batch size per GPU (equivalent to `per_device_train_batch_size` in the Trainer). We used a batch size of 1008 (approximately 4M tokens) during the stable training stage. Maintaining this same batch size is equally important for training effectiveness.
|
19 |
+
|
20 |
+
Below is an example of a properly configured `config.json` file:
|
21 |
+
|
22 |
+
```json
|
23 |
+
{
|
24 |
+
"best_metric": null,
|
25 |
+
"best_model_checkpoint": null,
|
26 |
+
"epoch": 0.0,
|
27 |
+
"eval_steps": 500,
|
28 |
+
"global_step": 0,
|
29 |
+
"is_hyper_param_search": false,
|
30 |
+
"is_local_process_zero": true,
|
31 |
+
"is_world_process_zero": true,
|
32 |
+
"log_history": [],
|
33 |
+
"logging_steps": 3,
|
34 |
+
"max_steps": 0,
|
35 |
+
"num_input_tokens_seen": 0,
|
36 |
+
"num_train_epochs": 0,
|
37 |
+
"save_steps": 250,
|
38 |
+
"stateful_callbacks": {
|
39 |
+
"TrainerControl": {
|
40 |
+
"args": {
|
41 |
+
"should_epoch_stop": false,
|
42 |
+
"should_evaluate": false,
|
43 |
+
"should_log": false,
|
44 |
+
"should_save": true,
|
45 |
+
"should_training_stop": true
|
46 |
+
},
|
47 |
+
"attributes": {}
|
48 |
+
}
|
49 |
+
},
|
50 |
+
"total_flos": 0,
|
51 |
+
"train_batch_size": 3,
|
52 |
+
"trial_name": null,
|
53 |
+
"trial_params": null
|
54 |
+
}
|
55 |
+
```
|
56 |
+
|
57 |
+
### Step 2: Enable Universal Checkpointing in the DeepSpeed Configuration
|
58 |
+
|
59 |
+
To ensure DeepSpeed Integration loads the Universal Checkpoint, you need to enable this feature in the DeepSpeed configuration JSON file.
|
60 |
+
|
61 |
+
Here is an example of a ZeRO2 configuration with Universal Checkpointing enabled:
|
62 |
+
|
63 |
+
```json
|
64 |
+
{
|
65 |
+
"bf16": {
|
66 |
+
"enabled": "auto"
|
67 |
+
},
|
68 |
+
"zero_optimization": {
|
69 |
+
"stage": 2,
|
70 |
+
"allgather_partitions": true,
|
71 |
+
"allgather_bucket_size": 8e8,
|
72 |
+
"overlap_comm": true,
|
73 |
+
"reduce_scatter": true,
|
74 |
+
"reduce_bucket_size": 8e8,
|
75 |
+
"contiguous_gradients": true
|
76 |
+
},
|
77 |
+
"gradient_accumulation_steps": "auto",
|
78 |
+
"gradient_clipping": "auto",
|
79 |
+
"steps_per_print": 16,
|
80 |
+
"train_batch_size": "auto",
|
81 |
+
"train_micro_batch_size_per_gpu": "auto",
|
82 |
+
"wall_clock_breakdown": false,
|
83 |
+
"dump_state": true,
|
84 |
+
"optimizer": {
|
85 |
+
"type": "AdamW",
|
86 |
+
"params": {
|
87 |
+
"lr": "auto",
|
88 |
+
"betas": "auto",
|
89 |
+
"eps": "auto",
|
90 |
+
"weight_decay": "auto"
|
91 |
+
}
|
92 |
+
},
|
93 |
+
"checkpoint": {
|
94 |
+
"load_universal": true
|
95 |
+
}
|
96 |
+
}
|
97 |
+
```
|
98 |
+
|
99 |
+
### Step 3: Resume Training
|
100 |
+
|
101 |
+
When calling `trainer.train`, include the `resume_from_checkpoint` argument to load the distributed optimizer state from the Universal Checkpoint and resume training.
|
102 |
+
|
103 |
+
```python
|
104 |
+
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
105 |
+
```
|
106 |
+
|
107 |
+
We provide an internal [training framework](https://github.com/RUC-GSAI/YuLan-Mini/tree/main/pretrain) for your reference, but you are free to choose other frameworks.
|
108 |
+
|