File size: 1,528 Bytes
172e90f 2ce9c0c 172e90f 2ce9c0c 172e90f 2ce9c0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
language: en
license: mit
library_name: diffusers
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
datasets: yuntian-deng/im2latex-100k
metrics: []
---
# latex2im_ss_finetunegptneo
## Model description
Details of this model can be found in [our paper on markup-to-image generation](https://arxiv.org/pdf/2210.05147.pdf). Our code is built on top of HuggingFace [diffusers](https://github.com/huggingface/diffusers) and [transformers](https://github.com/huggingface/transformers).
## Online Demo: [https://huggingface.co/spaces/yuntian-deng/latex2im](https://huggingface.co/spaces/yuntian-deng/latex2im).
## Model Details
- **Developed by:** Yuntian Deng, Noriyuki Kojima, Alexander M. Rush
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [MIT](https://github.com/da03/markup2im/blob/main/LICENSE).
- **Model Description:** This is a model that can be used to generate math formula images based on LaTeX prompts.
- **Resources for more information:** [GitHub Repository](https://github.com/da03/markup2im), [Paper](https://arxiv.org/abs/2210.05147).
- **Cite as:**
@inproceedings{
deng2023markuptoimage,
title={Markup-to-Image Diffusion Models with Scheduled Sampling},
author={Yuntian Deng and Noriyuki Kojima and Alexander M Rush},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
url={https://openreview.net/forum?id=81VJDmOE2ol}
}
|