yusuf
commited on
Commit
•
ae1e87a
1
Parent(s):
b5f58f2
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-lunarlander-v2-1.zip +3 -0
- ppo-lunarlander-v2-1/_stable_baselines3_version +1 -0
- ppo-lunarlander-v2-1/data +94 -0
- ppo-lunarlander-v2-1/policy.optimizer.pth +3 -0
- ppo-lunarlander-v2-1/policy.pth +3 -0
- ppo-lunarlander-v2-1/pytorch_variables.pth +3 -0
- ppo-lunarlander-v2-1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 213.76 +/- 66.72
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c1caf2c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c1caf2cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c1caf2d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c1caf2dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f7c1caf2e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c1caf2ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c1caf2f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c1caf9050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c1caf90e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c1caf9170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c1caf9200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7c1cad0060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651858752.9165328, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2wVT17moS6+xtju3vp6bY4QZs6kiyBOgAAgD8AAIA/GsUzPXvOm7rFWHa64gFgtU/UEjoruY05AACAPwAAgD9zX4g9UtiNOjPbPbvuHBc93ZUHO15qOz0AAAAAAAAAAMCWXT6FDp48UtDRuxRPB7oOAjA+Yg0NuwAAgD8AAIA/hhJyPq5ZuzueFpG8VP00ulpKPD3bV6O6AACAPwAAgD9tvwi+9AQCP249V718zqe+WKGlPIq8nz0AAAAAAAAAAIaGdT7hufe8lA2TunPNHTnTAVu+YoS/OQAAgD8AAIA/JrLqPSCykz5W7J283fKkvrGKO70Kbpm9AAAAAAAAAABz5tK99uAWuopy6zjEi7O1d5gtO+qUB7gAAIA/AACAP60AMT6eHOg+1U5ZPCbZn743twa7m9V4vQAAAAAAAAAA8+PnvVx7RbrIRM+7viYeOtcPxLpI8Le6AACAPwAAgD9AKLo9FEDHutreJ7yf+Kg7HRo9uupQkzwAAIA/AACAPya8kL1UnKw/UxASv16qwb7n1FE84JdovQAAAAAAAAAAmk0vvI8yGrpV4yE8xqdMNuF5FzuGrkM1AACAPwAAgD9NRRy9rsXAuiOR4DreRqg1n3CcuDJB/7kAAIA/AACAP2Dkar5uuLm8WkukvKK74rorLiA+JWCwOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjYAKR5AHVkCUhpRSlIwBbJRN6AOMAXSUR0CDKpKq4pc5dX2UKGgGaAloD0MI+PvFbMnrVkCUhpRSlGgVTegDaBZHQIMscsrd30R1fZQoaAZoCWgPQwhPle8ZCbZmQJSGlFKUaBVN6ANoFkdAgzSGrsByS3V9lChoBmgJaA9DCNzZVx6kBWJAlIaUUpRoFU3oA2gWR0CDOo4J/oaDdX2UKGgGaAloD0MIiZro89GjY0CUhpRSlGgVTegDaBZHQIM7DKmsNlR1fZQoaAZoCWgPQwivWpnwS3VeQJSGlFKUaBVN6ANoFkdAgzyV2JSBLHV9lChoBmgJaA9DCPIHA8+9UWdAlIaUUpRoFU3oA2gWR0CDPqWfK6nSdX2UKGgGaAloD0MIUAEwnkGLNkCUhpRSlGgVS5xoFkdAg0sGFzuF6HV9lChoBmgJaA9DCNPYXgt6oF9AlIaUUpRoFU3oA2gWR0CDUIKSgXdkdX2UKGgGaAloD0MIhjqscEt8Y0CUhpRSlGgVTegDaBZHQINRtcD8tPJ1fZQoaAZoCWgPQwhFnE6y1fUjQJSGlFKUaBVLq2gWR0CDUxIFvAGjdX2UKGgGaAloD0MIox03/O65Y0CUhpRSlGgVTegDaBZHQINacjLSuyN1fZQoaAZoCWgPQwglkX2QZYEPQJSGlFKUaBVLvGgWR0CDZneRgZ0kdX2UKGgGaAloD0MINqypLAr1WECUhpRSlGgVTegDaBZHQINpktNBWxR1fZQoaAZoCWgPQwhBEYsYdupXQJSGlFKUaBVN6ANoFkdAg2vDCYTkAHV9lChoBmgJaA9DCAGh9fBlOkxAlIaUUpRoFUujaBZHQIOCD1M/QjV1fZQoaAZoCWgPQwheRxyyge5TQJSGlFKUaBVN6ANoFkdAg4O37Lt/nXV9lChoBmgJaA9DCF+X4T9doWVAlIaUUpRoFU3oA2gWR0CDh53ljmSydX2UKGgGaAloD0MIaF4Ou+/fXUCUhpRSlGgVTegDaBZHQIOYroIOYpl1fZQoaAZoCWgPQwh2a5kMxytPQJSGlFKUaBVN6ANoFkdAg61IsRQJonV9lChoBmgJaA9DCBKI1/ULFgPAlIaUUpRoFUuxaBZHQIO0VEmY0EZ1fZQoaAZoCWgPQwhVbTfBN4BbQJSGlFKUaBVN6ANoFkdAhAOn5rP+oHV9lChoBmgJaA9DCE5hpYKKzFdAlIaUUpRoFU3oA2gWR0CEBW7iADq4dX2UKGgGaAloD0MILo7KTdTETECUhpRSlGgVS6doFkdAhAgfYao/A3V9lChoBmgJaA9DCFpnfF/cbmRAlIaUUpRoFU3oA2gWR0CEE3CTlkpadX2UKGgGaAloD0MIqYjTSbZoXUCUhpRSlGgVTegDaBZHQIQVra9K28Z1fZQoaAZoCWgPQwjhCijU06haQJSGlFKUaBVN6ANoFkdAhBe5aFEiMnV9lChoBmgJaA9DCMHEH0Wdol1AlIaUUpRoFU3oA2gWR0CEKblum78OdX2UKGgGaAloD0MI0SSxpNz4VUCUhpRSlGgVTegDaBZHQIQq4J5VwP11fZQoaAZoCWgPQwijeQCLfFdhQJSGlFKUaBVN6ANoFkdAhCxChnJ1aHV9lChoBmgJaA9DCGPS30vhk1ZAlIaUUpRoFU3oA2gWR0CEMv8ma6SUdX2UKGgGaAloD0MIx3+BIMDhYkCUhpRSlGgVTegDaBZHQIQ+nNke6qd1fZQoaAZoCWgPQwgXK2owDcJZQJSGlFKUaBVN6ANoFkdAhEN2Q4jrzHV9lChoBmgJaA9DCMucLouJITVAlIaUUpRoFUvIaBZHQIRPueOGTLZ1fZQoaAZoCWgPQwjltRK6S7RRwJSGlFKUaBVNFQFoFkdAhFIZuAI6bXV9lChoBmgJaA9DCAmNYOP6Tl1AlIaUUpRoFU3oA2gWR0CEWSyJsO5KdX2UKGgGaAloD0MI36P+eoWlEUCUhpRSlGgVS5hoFkdAhFnI/zJ6p3V9lChoBmgJaA9DCDQUd7zJZWNAlIaUUpRoFU3oA2gWR0CEWqM6zVtodX2UKGgGaAloD0MIFcrC19czZECUhpRSlGgVTegDaBZHQIRd/DiwSrZ1fZQoaAZoCWgPQwjjVdY2xfNNQJSGlFKUaBVLtWgWR0CEaO6e5Fw2dX2UKGgGaAloD0MITIi5pGoJT0CUhpRSlGgVS3loFkdAhGl7KA8SwnV9lChoBmgJaA9DCLVrQlpjAEZAlIaUUpRoFU3oA2gWR0CEh/G9YfW+dX2UKGgGaAloD0MI8RKc+kCfYUCUhpRSlGgVTegDaBZHQITWiDXe3x51fZQoaAZoCWgPQwix+E1hpUNfQJSGlFKUaBVN6ANoFkdAhNhx15jYqXV9lChoBmgJaA9DCMFu2LYolWFAlIaUUpRoFU3oA2gWR0CE2xj2Bas7dX2UKGgGaAloD0MIPSgoRSsyXkCUhpRSlGgVTegDaBZHQITlcyad+Xt1fZQoaAZoCWgPQwheSfJc32NcQJSGlFKUaBVN6ANoFkdAhOdku6ErXnV9lChoBmgJaA9DCOT3Nv3ZdmBAlIaUUpRoFU3oA2gWR0CE6U9C/oJRdX2UKGgGaAloD0MIMBNFSN2wQ8CUhpRSlGgVS6VoFkdAhO59fsu3+nV9lChoBmgJaA9DCFx0stR6tlVAlIaUUpRoFU3oA2gWR0CE+sIF/x2CdX2UKGgGaAloD0MINpAuNq0UYECUhpRSlGgVTegDaBZHQIT9NiWmgrZ1fZQoaAZoCWgPQwhMp3Ub1J1XQJSGlFKUaBVN6ANoFkdAhRB2SEDhcnV9lChoBmgJaA9DCK358ZcWF1pAlIaUUpRoFU3oA2gWR0CFJvPGACnxdX2UKGgGaAloD0MIn+bkRSajXkCUhpRSlGgVTegDaBZHQIUv8ehf0Ep1fZQoaAZoCWgPQwhDU3b6wSlhQJSGlFKUaBVN6ANoFkdAhTEC/XXiBHV9lChoBmgJaA9DCAvT9xoCP2RAlIaUUpRoFU3oA2gWR0CFNNoSteUqdX2UKGgGaAloD0MI6SgHswkXYECUhpRSlGgVTegDaBZHQIVBIgaFVT91fZQoaAZoCWgPQwgNx/MZUCFQQJSGlFKUaBVN6ANoFkdAhUHM8ox59nV9lChoBmgJaA9DCN3sD5TbNEpAlIaUUpRoFUvCaBZHQIVM0Md92HN1fZQoaAZoCWgPQwiYo8fvbaoqwJSGlFKUaBVLwGgWR0CFXoI6bONYdX2UKGgGaAloD0MIj6uRXWnCWkCUhpRSlGgVTegDaBZHQIVgLibUgB91fZQoaAZoCWgPQwjAlleuN31iQJSGlFKUaBVN6ANoFkdAhbAWBreqJnV9lChoBmgJaA9DCOOkMO9xcVlAlIaUUpRoFU3oA2gWR0CFss3EQ5FPdX2UKGgGaAloD0MIXALwTyl0ZECUhpRSlGgVTegDaBZHQIW9sjVx0dR1fZQoaAZoCWgPQwjYKVYNwlpeQJSGlFKUaBVN6ANoFkdAhb/vHtF8X3V9lChoBmgJaA9DCCFX6lkQX2FAlIaUUpRoFU3oA2gWR0CFwghufmLcdX2UKGgGaAloD0MI3UCBd/L9W0CUhpRSlGgVTegDaBZHQIXIC/Efkmx1fZQoaAZoCWgPQwjR6Xk3FudeQJSGlFKUaBVN6ANoFkdAhdTMqSX+l3V9lChoBmgJaA9DCOPCgZCsYWFAlIaUUpRoFU3oA2gWR0CF12vgWJrMdX2UKGgGaAloD0MIXmiu00gLT0CUhpRSlGgVS7VoFkdAhdpAKv3ajHV9lChoBmgJaA9DCEM8Ei9PizPAlIaUUpRoFUvhaBZHQIXopfdAPd51fZQoaAZoCWgPQwiUvhBy3vFbQJSGlFKUaBVN6ANoFkdAherPsJIDo3V9lChoBmgJaA9DCFWmmIOg20JAlIaUUpRoFUu7aBZHQIXwThFVktp1fZQoaAZoCWgPQwhYkdEBSSdhQJSGlFKUaBVN6ANoFkdAhf/1e0G/vnV9lChoBmgJaA9DCPON6J51R2BAlIaUUpRoFU3oA2gWR0CGCVPMSsbOdX2UKGgGaAloD0MIiKHVyZkGYECUhpRSlGgVTegDaBZHQIYNRzDGcWl1fZQoaAZoCWgPQwiemWA4V21iQJSGlFKUaBVN6ANoFkdAhhrt2C/XXnV9lChoBmgJaA9DCB7C+GlcamVAlIaUUpRoFU3oA2gWR0CGJw8Md92HdX2UKGgGaAloD0MIU5W2uMa/UECUhpRSlGgVTegDaBZHQIY54ymALAp1fZQoaAZoCWgPQwjr/Ntlvz5jQJSGlFKUaBVN6ANoFkdAhjuWqcVgyHV9lChoBmgJaA9DCKJBCp5C2EFAlIaUUpRoFUvQaBZHQIY9JqdpZfV1fZQoaAZoCWgPQwiRDaSLTUFiQJSGlFKUaBVN6ANoFkdAhot5p8F6iXV9lChoBmgJaA9DCAHAsWfPTWNAlIaUUpRoFU3oA2gWR0CGjk6V+qiodX2UKGgGaAloD0MI1JrmHac6WkCUhpRSlGgVTegDaBZHQIaZgv38GcF1fZQoaAZoCWgPQwi62/XSFHZiQJSGlFKUaBVN6ANoFkdAhp3rvCuU2XV9lChoBmgJaA9DCJT6srRT81NAlIaUUpRoFU3oA2gWR0CGtoEr5IpZdX2UKGgGaAloD0MILq2GxL0YYUCUhpRSlGgVTegDaBZHQIa6LsjVx0d1fZQoaAZoCWgPQwgdIm5OJTczQJSGlFKUaBVNBAFoFkdAhspA8bJfY3V9lChoBmgJaA9DCOFfBI2ZtCxAlIaUUpRoFU3oA2gWR0CGyx32VVxTdX2UKGgGaAloD0MIA7UYPExyYUCUhpRSlGgVTegDaBZHQIbNVP1tfol1fZQoaAZoCWgPQwinIhXGFrJhQJSGlFKUaBVN6ANoFkdAhtK4OtnwonV9lChoBmgJaA9DCLMngc05QFpAlIaUUpRoFU3oA2gWR0CG4UQEIPbxdX2UKGgGaAloD0MIEeSghBkMYUCUhpRSlGgVTegDaBZHQIbqO2d/axp1fZQoaAZoCWgPQwip91ROe0RIQJSGlFKUaBVN6ANoFkdAhu4ESmIj4nV9lChoBmgJaA9DCKsINxlVkjVAlIaUUpRoFUu+aBZHQIbvQ99tuUF1fZQoaAZoCWgPQwghrpy9MxdkQJSGlFKUaBVN6ANoFkdAhwabeMyaeHV9lChoBmgJaA9DCGq8dJMYmVxAlIaUUpRoFU3oA2gWR0CHGF8n/kvLdX2UKGgGaAloD0MI4lZBDHSFY0CUhpRSlGgVTegDaBZHQIcaBTbWVeN1fZQoaAZoCWgPQwjDR8SUyL1gQJSGlFKUaBVN6ANoFkdAhxuAiNbTt3V9lChoBmgJaA9DCAX8GkmCp2VAlIaUUpRoFU3oA2gWR0CHKaL74zrNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-lunarlander-v2-1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e9c0899bf20972e06ad6cf1ecd4a6883eff25913f13fe693791029d501cee3b
|
3 |
+
size 144024
|
ppo-lunarlander-v2-1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-lunarlander-v2-1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c1caf2c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c1caf2cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c1caf2d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c1caf2dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7c1caf2e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7c1caf2ef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c1caf2f80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7c1caf9050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c1caf90e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c1caf9170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c1caf9200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7c1cad0060>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651858752.9165328,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2wVT17moS6+xtju3vp6bY4QZs6kiyBOgAAgD8AAIA/GsUzPXvOm7rFWHa64gFgtU/UEjoruY05AACAPwAAgD9zX4g9UtiNOjPbPbvuHBc93ZUHO15qOz0AAAAAAAAAAMCWXT6FDp48UtDRuxRPB7oOAjA+Yg0NuwAAgD8AAIA/hhJyPq5ZuzueFpG8VP00ulpKPD3bV6O6AACAPwAAgD9tvwi+9AQCP249V718zqe+WKGlPIq8nz0AAAAAAAAAAIaGdT7hufe8lA2TunPNHTnTAVu+YoS/OQAAgD8AAIA/JrLqPSCykz5W7J283fKkvrGKO70Kbpm9AAAAAAAAAABz5tK99uAWuopy6zjEi7O1d5gtO+qUB7gAAIA/AACAP60AMT6eHOg+1U5ZPCbZn743twa7m9V4vQAAAAAAAAAA8+PnvVx7RbrIRM+7viYeOtcPxLpI8Le6AACAPwAAgD9AKLo9FEDHutreJ7yf+Kg7HRo9uupQkzwAAIA/AACAPya8kL1UnKw/UxASv16qwb7n1FE84JdovQAAAAAAAAAAmk0vvI8yGrpV4yE8xqdMNuF5FzuGrkM1AACAPwAAgD9NRRy9rsXAuiOR4DreRqg1n3CcuDJB/7kAAIA/AACAP2Dkar5uuLm8WkukvKK74rorLiA+JWCwOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjYAKR5AHVkCUhpRSlIwBbJRN6AOMAXSUR0CDKpKq4pc5dX2UKGgGaAloD0MI+PvFbMnrVkCUhpRSlGgVTegDaBZHQIMscsrd30R1fZQoaAZoCWgPQwhPle8ZCbZmQJSGlFKUaBVN6ANoFkdAgzSGrsByS3V9lChoBmgJaA9DCNzZVx6kBWJAlIaUUpRoFU3oA2gWR0CDOo4J/oaDdX2UKGgGaAloD0MIiZro89GjY0CUhpRSlGgVTegDaBZHQIM7DKmsNlR1fZQoaAZoCWgPQwivWpnwS3VeQJSGlFKUaBVN6ANoFkdAgzyV2JSBLHV9lChoBmgJaA9DCPIHA8+9UWdAlIaUUpRoFU3oA2gWR0CDPqWfK6nSdX2UKGgGaAloD0MIUAEwnkGLNkCUhpRSlGgVS5xoFkdAg0sGFzuF6HV9lChoBmgJaA9DCNPYXgt6oF9AlIaUUpRoFU3oA2gWR0CDUIKSgXdkdX2UKGgGaAloD0MIhjqscEt8Y0CUhpRSlGgVTegDaBZHQINRtcD8tPJ1fZQoaAZoCWgPQwhFnE6y1fUjQJSGlFKUaBVLq2gWR0CDUxIFvAGjdX2UKGgGaAloD0MIox03/O65Y0CUhpRSlGgVTegDaBZHQINacjLSuyN1fZQoaAZoCWgPQwglkX2QZYEPQJSGlFKUaBVLvGgWR0CDZneRgZ0kdX2UKGgGaAloD0MINqypLAr1WECUhpRSlGgVTegDaBZHQINpktNBWxR1fZQoaAZoCWgPQwhBEYsYdupXQJSGlFKUaBVN6ANoFkdAg2vDCYTkAHV9lChoBmgJaA9DCAGh9fBlOkxAlIaUUpRoFUujaBZHQIOCD1M/QjV1fZQoaAZoCWgPQwheRxyyge5TQJSGlFKUaBVN6ANoFkdAg4O37Lt/nXV9lChoBmgJaA9DCF+X4T9doWVAlIaUUpRoFU3oA2gWR0CDh53ljmSydX2UKGgGaAloD0MIaF4Ou+/fXUCUhpRSlGgVTegDaBZHQIOYroIOYpl1fZQoaAZoCWgPQwh2a5kMxytPQJSGlFKUaBVN6ANoFkdAg61IsRQJonV9lChoBmgJaA9DCBKI1/ULFgPAlIaUUpRoFUuxaBZHQIO0VEmY0EZ1fZQoaAZoCWgPQwhVbTfBN4BbQJSGlFKUaBVN6ANoFkdAhAOn5rP+oHV9lChoBmgJaA9DCE5hpYKKzFdAlIaUUpRoFU3oA2gWR0CEBW7iADq4dX2UKGgGaAloD0MILo7KTdTETECUhpRSlGgVS6doFkdAhAgfYao/A3V9lChoBmgJaA9DCFpnfF/cbmRAlIaUUpRoFU3oA2gWR0CEE3CTlkpadX2UKGgGaAloD0MIqYjTSbZoXUCUhpRSlGgVTegDaBZHQIQVra9K28Z1fZQoaAZoCWgPQwjhCijU06haQJSGlFKUaBVN6ANoFkdAhBe5aFEiMnV9lChoBmgJaA9DCMHEH0Wdol1AlIaUUpRoFU3oA2gWR0CEKblum78OdX2UKGgGaAloD0MI0SSxpNz4VUCUhpRSlGgVTegDaBZHQIQq4J5VwP11fZQoaAZoCWgPQwijeQCLfFdhQJSGlFKUaBVN6ANoFkdAhCxChnJ1aHV9lChoBmgJaA9DCGPS30vhk1ZAlIaUUpRoFU3oA2gWR0CEMv8ma6SUdX2UKGgGaAloD0MIx3+BIMDhYkCUhpRSlGgVTegDaBZHQIQ+nNke6qd1fZQoaAZoCWgPQwgXK2owDcJZQJSGlFKUaBVN6ANoFkdAhEN2Q4jrzHV9lChoBmgJaA9DCMucLouJITVAlIaUUpRoFUvIaBZHQIRPueOGTLZ1fZQoaAZoCWgPQwjltRK6S7RRwJSGlFKUaBVNFQFoFkdAhFIZuAI6bXV9lChoBmgJaA9DCAmNYOP6Tl1AlIaUUpRoFU3oA2gWR0CEWSyJsO5KdX2UKGgGaAloD0MI36P+eoWlEUCUhpRSlGgVS5hoFkdAhFnI/zJ6p3V9lChoBmgJaA9DCDQUd7zJZWNAlIaUUpRoFU3oA2gWR0CEWqM6zVtodX2UKGgGaAloD0MIFcrC19czZECUhpRSlGgVTegDaBZHQIRd/DiwSrZ1fZQoaAZoCWgPQwjjVdY2xfNNQJSGlFKUaBVLtWgWR0CEaO6e5Fw2dX2UKGgGaAloD0MITIi5pGoJT0CUhpRSlGgVS3loFkdAhGl7KA8SwnV9lChoBmgJaA9DCLVrQlpjAEZAlIaUUpRoFU3oA2gWR0CEh/G9YfW+dX2UKGgGaAloD0MI8RKc+kCfYUCUhpRSlGgVTegDaBZHQITWiDXe3x51fZQoaAZoCWgPQwix+E1hpUNfQJSGlFKUaBVN6ANoFkdAhNhx15jYqXV9lChoBmgJaA9DCMFu2LYolWFAlIaUUpRoFU3oA2gWR0CE2xj2Bas7dX2UKGgGaAloD0MIPSgoRSsyXkCUhpRSlGgVTegDaBZHQITlcyad+Xt1fZQoaAZoCWgPQwheSfJc32NcQJSGlFKUaBVN6ANoFkdAhOdku6ErXnV9lChoBmgJaA9DCOT3Nv3ZdmBAlIaUUpRoFU3oA2gWR0CE6U9C/oJRdX2UKGgGaAloD0MIMBNFSN2wQ8CUhpRSlGgVS6VoFkdAhO59fsu3+nV9lChoBmgJaA9DCFx0stR6tlVAlIaUUpRoFU3oA2gWR0CE+sIF/x2CdX2UKGgGaAloD0MINpAuNq0UYECUhpRSlGgVTegDaBZHQIT9NiWmgrZ1fZQoaAZoCWgPQwhMp3Ub1J1XQJSGlFKUaBVN6ANoFkdAhRB2SEDhcnV9lChoBmgJaA9DCK358ZcWF1pAlIaUUpRoFU3oA2gWR0CFJvPGACnxdX2UKGgGaAloD0MIn+bkRSajXkCUhpRSlGgVTegDaBZHQIUv8ehf0Ep1fZQoaAZoCWgPQwhDU3b6wSlhQJSGlFKUaBVN6ANoFkdAhTEC/XXiBHV9lChoBmgJaA9DCAvT9xoCP2RAlIaUUpRoFU3oA2gWR0CFNNoSteUqdX2UKGgGaAloD0MI6SgHswkXYECUhpRSlGgVTegDaBZHQIVBIgaFVT91fZQoaAZoCWgPQwgNx/MZUCFQQJSGlFKUaBVN6ANoFkdAhUHM8ox59nV9lChoBmgJaA9DCN3sD5TbNEpAlIaUUpRoFUvCaBZHQIVM0Md92HN1fZQoaAZoCWgPQwiYo8fvbaoqwJSGlFKUaBVLwGgWR0CFXoI6bONYdX2UKGgGaAloD0MIj6uRXWnCWkCUhpRSlGgVTegDaBZHQIVgLibUgB91fZQoaAZoCWgPQwjAlleuN31iQJSGlFKUaBVN6ANoFkdAhbAWBreqJnV9lChoBmgJaA9DCOOkMO9xcVlAlIaUUpRoFU3oA2gWR0CFss3EQ5FPdX2UKGgGaAloD0MIXALwTyl0ZECUhpRSlGgVTegDaBZHQIW9sjVx0dR1fZQoaAZoCWgPQwjYKVYNwlpeQJSGlFKUaBVN6ANoFkdAhb/vHtF8X3V9lChoBmgJaA9DCCFX6lkQX2FAlIaUUpRoFU3oA2gWR0CFwghufmLcdX2UKGgGaAloD0MI3UCBd/L9W0CUhpRSlGgVTegDaBZHQIXIC/Efkmx1fZQoaAZoCWgPQwjR6Xk3FudeQJSGlFKUaBVN6ANoFkdAhdTMqSX+l3V9lChoBmgJaA9DCOPCgZCsYWFAlIaUUpRoFU3oA2gWR0CF12vgWJrMdX2UKGgGaAloD0MIXmiu00gLT0CUhpRSlGgVS7VoFkdAhdpAKv3ajHV9lChoBmgJaA9DCEM8Ei9PizPAlIaUUpRoFUvhaBZHQIXopfdAPd51fZQoaAZoCWgPQwiUvhBy3vFbQJSGlFKUaBVN6ANoFkdAherPsJIDo3V9lChoBmgJaA9DCFWmmIOg20JAlIaUUpRoFUu7aBZHQIXwThFVktp1fZQoaAZoCWgPQwhYkdEBSSdhQJSGlFKUaBVN6ANoFkdAhf/1e0G/vnV9lChoBmgJaA9DCPON6J51R2BAlIaUUpRoFU3oA2gWR0CGCVPMSsbOdX2UKGgGaAloD0MIiKHVyZkGYECUhpRSlGgVTegDaBZHQIYNRzDGcWl1fZQoaAZoCWgPQwiemWA4V21iQJSGlFKUaBVN6ANoFkdAhhrt2C/XXnV9lChoBmgJaA9DCB7C+GlcamVAlIaUUpRoFU3oA2gWR0CGJw8Md92HdX2UKGgGaAloD0MIU5W2uMa/UECUhpRSlGgVTegDaBZHQIY54ymALAp1fZQoaAZoCWgPQwjr/Ntlvz5jQJSGlFKUaBVN6ANoFkdAhjuWqcVgyHV9lChoBmgJaA9DCKJBCp5C2EFAlIaUUpRoFUvQaBZHQIY9JqdpZfV1fZQoaAZoCWgPQwiRDaSLTUFiQJSGlFKUaBVN6ANoFkdAhot5p8F6iXV9lChoBmgJaA9DCAHAsWfPTWNAlIaUUpRoFU3oA2gWR0CGjk6V+qiodX2UKGgGaAloD0MI1JrmHac6WkCUhpRSlGgVTegDaBZHQIaZgv38GcF1fZQoaAZoCWgPQwi62/XSFHZiQJSGlFKUaBVN6ANoFkdAhp3rvCuU2XV9lChoBmgJaA9DCJT6srRT81NAlIaUUpRoFU3oA2gWR0CGtoEr5IpZdX2UKGgGaAloD0MILq2GxL0YYUCUhpRSlGgVTegDaBZHQIa6LsjVx0d1fZQoaAZoCWgPQwgdIm5OJTczQJSGlFKUaBVNBAFoFkdAhspA8bJfY3V9lChoBmgJaA9DCOFfBI2ZtCxAlIaUUpRoFU3oA2gWR0CGyx32VVxTdX2UKGgGaAloD0MIA7UYPExyYUCUhpRSlGgVTegDaBZHQIbNVP1tfol1fZQoaAZoCWgPQwinIhXGFrJhQJSGlFKUaBVN6ANoFkdAhtK4OtnwonV9lChoBmgJaA9DCLMngc05QFpAlIaUUpRoFU3oA2gWR0CG4UQEIPbxdX2UKGgGaAloD0MIEeSghBkMYUCUhpRSlGgVTegDaBZHQIbqO2d/axp1fZQoaAZoCWgPQwip91ROe0RIQJSGlFKUaBVN6ANoFkdAhu4ESmIj4nV9lChoBmgJaA9DCKsINxlVkjVAlIaUUpRoFUu+aBZHQIbvQ99tuUF1fZQoaAZoCWgPQwghrpy9MxdkQJSGlFKUaBVN6ANoFkdAhwabeMyaeHV9lChoBmgJaA9DCGq8dJMYmVxAlIaUUpRoFU3oA2gWR0CHGF8n/kvLdX2UKGgGaAloD0MI4lZBDHSFY0CUhpRSlGgVTegDaBZHQIcaBTbWVeN1fZQoaAZoCWgPQwjDR8SUyL1gQJSGlFKUaBVN6ANoFkdAhxuAiNbTt3V9lChoBmgJaA9DCAX8GkmCp2VAlIaUUpRoFU3oA2gWR0CHKaL74zrNdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-lunarlander-v2-1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c224cf4c4b310116f702b0edf741940469aeb4011676992078a9f46ec92b0fa
|
3 |
+
size 84829
|
ppo-lunarlander-v2-1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e087827adc4a6b8fdd66b928f46759f2e362dc95b8b86dac7e9edff01f8cb40f
|
3 |
+
size 43201
|
ppo-lunarlander-v2-1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunarlander-v2-1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdc9b94571bfdf4161a1a5917422c50faffbafcb5a2560e19cd3a282938240d1
|
3 |
+
size 248445
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 213.76212954627152, "std_reward": 66.72426132788031, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T19:16:21.041062"}
|