File size: 2,850 Bytes
01e11f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.84
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5916
- Accuracy: 0.84

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2746        | 1.0   | 57   | 2.2507          | 0.28     |
| 2.0451        | 2.0   | 114  | 1.9551          | 0.5      |
| 1.6461        | 3.0   | 171  | 1.5926          | 0.68     |
| 1.5045        | 4.0   | 228  | 1.3429          | 0.75     |
| 1.2469        | 5.0   | 285  | 1.1902          | 0.75     |
| 1.12          | 6.0   | 342  | 1.1030          | 0.74     |
| 1.0061        | 7.0   | 399  | 0.9923          | 0.77     |
| 0.9674        | 8.0   | 456  | 0.8894          | 0.81     |
| 0.8545        | 9.0   | 513  | 0.8524          | 0.82     |
| 0.6644        | 10.0  | 570  | 0.8045          | 0.81     |
| 0.5531        | 11.0  | 627  | 0.8388          | 0.8      |
| 0.5411        | 12.0  | 684  | 0.6921          | 0.83     |
| 0.4759        | 13.0  | 741  | 0.7136          | 0.83     |
| 0.4236        | 14.0  | 798  | 0.6716          | 0.83     |
| 0.4235        | 15.0  | 855  | 0.6322          | 0.82     |
| 0.4098        | 16.0  | 912  | 0.6108          | 0.83     |
| 0.3988        | 17.0  | 969  | 0.6296          | 0.85     |
| 0.3493        | 18.0  | 1026 | 0.5921          | 0.83     |
| 0.3143        | 19.0  | 1083 | 0.5948          | 0.84     |
| 0.3036        | 20.0  | 1140 | 0.5916          | 0.84     |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.3