File size: 2,538 Bytes
01e11f1
 
 
 
 
 
2b62638
 
01e11f1
 
2b62638
 
 
 
 
 
 
 
 
 
 
 
 
 
01e11f1
 
 
 
 
 
 
 
 
053a372
2b62638
01e11f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
053a372
197e767
 
01e11f1
 
 
 
053a372
01e11f1
2b62638
 
 
 
053a372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b62638
 
01e11f1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.84
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6273
- Accuracy: 0.84

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.253         | 1.0   | 57   | 2.2124          | 0.43     |
| 1.8499        | 2.0   | 114  | 1.7776          | 0.56     |
| 1.4569        | 3.0   | 171  | 1.4535          | 0.69     |
| 1.3715        | 4.0   | 228  | 1.2296          | 0.74     |
| 1.097         | 5.0   | 285  | 1.0841          | 0.73     |
| 0.9876        | 6.0   | 342  | 0.9591          | 0.76     |
| 0.8501        | 7.0   | 399  | 0.8912          | 0.75     |
| 0.8233        | 8.0   | 456  | 0.8314          | 0.75     |
| 0.7055        | 9.0   | 513  | 0.7713          | 0.77     |
| 0.5709        | 10.0  | 570  | 0.7053          | 0.81     |
| 0.4924        | 11.0  | 627  | 0.7325          | 0.79     |
| 0.4679        | 12.0  | 684  | 0.6562          | 0.8      |
| 0.496         | 13.0  | 741  | 0.6376          | 0.85     |
| 0.3827        | 14.0  | 798  | 0.6331          | 0.84     |
| 0.4118        | 15.0  | 855  | 0.6273          | 0.84     |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.3