--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6273 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.253 | 1.0 | 57 | 2.2124 | 0.43 | | 1.8499 | 2.0 | 114 | 1.7776 | 0.56 | | 1.4569 | 3.0 | 171 | 1.4535 | 0.69 | | 1.3715 | 4.0 | 228 | 1.2296 | 0.74 | | 1.097 | 5.0 | 285 | 1.0841 | 0.73 | | 0.9876 | 6.0 | 342 | 0.9591 | 0.76 | | 0.8501 | 7.0 | 399 | 0.8912 | 0.75 | | 0.8233 | 8.0 | 456 | 0.8314 | 0.75 | | 0.7055 | 9.0 | 513 | 0.7713 | 0.77 | | 0.5709 | 10.0 | 570 | 0.7053 | 0.81 | | 0.4924 | 11.0 | 627 | 0.7325 | 0.79 | | 0.4679 | 12.0 | 684 | 0.6562 | 0.8 | | 0.496 | 13.0 | 741 | 0.6376 | 0.85 | | 0.3827 | 14.0 | 798 | 0.6331 | 0.84 | | 0.4118 | 15.0 | 855 | 0.6273 | 0.84 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.3