--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy base_model: ntu-spml/distilhubert model-index: - name: distilhubert-finetuned-gtzan results: - task: type: audio-classification name: Audio Classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - type: accuracy value: 0.87 name: Accuracy --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5647 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2278 | 1.0 | 57 | 2.1709 | 0.44 | | 1.7173 | 2.0 | 114 | 1.6084 | 0.57 | | 1.1979 | 3.0 | 171 | 1.1897 | 0.67 | | 1.1177 | 4.0 | 228 | 1.0003 | 0.72 | | 0.8526 | 5.0 | 285 | 0.8854 | 0.73 | | 0.6463 | 6.0 | 342 | 0.7791 | 0.79 | | 0.5461 | 7.0 | 399 | 0.7468 | 0.78 | | 0.3953 | 8.0 | 456 | 0.7352 | 0.75 | | 0.3054 | 9.0 | 513 | 0.6757 | 0.79 | | 0.18 | 10.0 | 570 | 0.5711 | 0.76 | | 0.1526 | 11.0 | 627 | 0.6026 | 0.85 | | 0.0812 | 12.0 | 684 | 0.5876 | 0.82 | | 0.0578 | 13.0 | 741 | 0.5815 | 0.85 | | 0.0318 | 14.0 | 798 | 0.5828 | 0.85 | | 0.0283 | 15.0 | 855 | 0.5960 | 0.85 | | 0.0393 | 16.0 | 912 | 0.5674 | 0.85 | | 0.018 | 17.0 | 969 | 0.5647 | 0.87 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.3