Update README.md
Browse filesadded Model-Description
README.md
CHANGED
@@ -5,6 +5,8 @@ base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
|
5 |
tags:
|
6 |
- axolotl
|
7 |
- generated_from_trainer
|
|
|
|
|
8 |
model-index:
|
9 |
- name: Llama-3-8B-spectrum-25
|
10 |
results: []
|
@@ -13,194 +15,23 @@ model-index:
|
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
17 |
-
<details><summary>See axolotl config</summary>
|
18 |
-
|
19 |
-
axolotl version: `0.4.1`
|
20 |
-
```yaml
|
21 |
-
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
22 |
-
model_type: LlamaForCausalLM
|
23 |
-
tokenizer_type: AutoTokenizer
|
24 |
-
is_llama_derived_model: true
|
25 |
-
tokenizer_use_fast: true
|
26 |
-
hub_model_id: Llama-3-8B-spectrum-25
|
27 |
-
|
28 |
-
# load_in_8bit: true
|
29 |
-
# load_in_4bit: false
|
30 |
-
# strict: false
|
31 |
-
|
32 |
-
datasets:
|
33 |
-
- path: yuvraj17/finetune_alpaca_1K
|
34 |
-
type: alpaca
|
35 |
-
|
36 |
-
dataset_prepared_path: last_run_prepared
|
37 |
-
val_set_size: 0.02
|
38 |
-
output_dir: ./outputs/llama-3-8b-spectrum-25
|
39 |
-
|
40 |
-
sequence_len: 2048
|
41 |
-
sample_packing: false
|
42 |
-
eval_sample_packing: false
|
43 |
-
pad_to_sequence_len: true
|
44 |
-
|
45 |
-
# Model Layers for Llama-3-8B-Instruct (Spectrum with snr values (25%)):
|
46 |
-
unfrozen_parameters:
|
47 |
-
- ^lm_head.weight$
|
48 |
-
- ^model.embed_tokens.weight$
|
49 |
-
# input_layernorm layers
|
50 |
-
- model.layers.0.input_layernorm
|
51 |
-
- model.layers.1.input_layernorm
|
52 |
-
- model.layers.2.input_layernorm
|
53 |
-
- model.layers.3.input_layernorm
|
54 |
-
- model.layers.4.input_layernorm
|
55 |
-
- model.layers.5.input_layernorm
|
56 |
-
- model.layers.6.input_layernorm
|
57 |
-
- model.layers.7.input_layernorm
|
58 |
-
# lm_head layers
|
59 |
-
# mlp.down_proj layers
|
60 |
-
- model.layers.1.mlp.down_proj
|
61 |
-
- model.layers.0.mlp.down_proj
|
62 |
-
- model.layers.2.mlp.down_proj
|
63 |
-
- model.layers.30.mlp.down_proj
|
64 |
-
- model.layers.22.mlp.down_proj
|
65 |
-
- model.layers.21.mlp.down_proj
|
66 |
-
- model.layers.5.mlp.down_proj
|
67 |
-
- model.layers.29.mlp.down_proj
|
68 |
-
# mlp.gate_proj layers
|
69 |
-
- model.layers.1.mlp.gate_proj
|
70 |
-
- model.layers.2.mlp.gate_proj
|
71 |
-
- model.layers.3.mlp.gate_proj
|
72 |
-
- model.layers.0.mlp.gate_proj
|
73 |
-
- model.layers.4.mlp.gate_proj
|
74 |
-
- model.layers.25.mlp.gate_proj
|
75 |
-
- model.layers.26.mlp.gate_proj
|
76 |
-
- model.layers.5.mlp.gate_proj
|
77 |
-
# mlp.up_proj layers
|
78 |
-
- model.layers.4.mlp.up_proj
|
79 |
-
- model.layers.0.mlp.up_proj
|
80 |
-
- model.layers.3.mlp.up_proj
|
81 |
-
- model.layers.5.mlp.up_proj
|
82 |
-
- model.layers.7.mlp.up_proj
|
83 |
-
- model.layers.6.mlp.up_proj
|
84 |
-
- model.layers.2.mlp.up_proj
|
85 |
-
- model.layers.1.mlp.up_proj
|
86 |
-
# model.embed_tokens layers
|
87 |
-
# model.norm layers
|
88 |
-
# post_attention_layernorm layers
|
89 |
-
- model.layers.0.post_attention_layernorm
|
90 |
-
- model.layers.1.post_attention_layernorm
|
91 |
-
- model.layers.2.post_attention_layernorm
|
92 |
-
- model.layers.3.post_attention_layernorm
|
93 |
-
- model.layers.4.post_attention_layernorm
|
94 |
-
- model.layers.5.post_attention_layernorm
|
95 |
-
- model.layers.6.post_attention_layernorm
|
96 |
-
- model.layers.7.post_attention_layernorm
|
97 |
-
# self_attn.k_proj layers
|
98 |
-
- model.layers.29.self_attn.k_proj
|
99 |
-
- model.layers.25.self_attn.k_proj
|
100 |
-
- model.layers.23.self_attn.k_proj
|
101 |
-
- model.layers.28.self_attn.k_proj
|
102 |
-
- model.layers.21.self_attn.k_proj
|
103 |
-
- model.layers.19.self_attn.k_proj
|
104 |
-
- model.layers.22.self_attn.k_proj
|
105 |
-
- model.layers.20.self_attn.k_proj
|
106 |
-
# self_attn.o_proj layers
|
107 |
-
- model.layers.14.self_attn.o_proj
|
108 |
-
- model.layers.7.self_attn.o_proj
|
109 |
-
- model.layers.5.self_attn.o_proj
|
110 |
-
- model.layers.11.self_attn.o_proj
|
111 |
-
- model.layers.9.self_attn.o_proj
|
112 |
-
- model.layers.6.self_attn.o_proj
|
113 |
-
- model.layers.13.self_attn.o_proj
|
114 |
-
- model.layers.10.self_attn.o_proj
|
115 |
-
# self_attn.q_proj layers
|
116 |
-
- model.layers.13.self_attn.q_proj
|
117 |
-
- model.layers.9.self_attn.q_proj
|
118 |
-
- model.layers.10.self_attn.q_proj
|
119 |
-
- model.layers.8.self_attn.q_proj
|
120 |
-
- model.layers.14.self_attn.q_proj
|
121 |
-
- model.layers.11.self_attn.q_proj
|
122 |
-
- model.layers.0.self_attn.q_proj
|
123 |
-
- model.layers.15.self_attn.q_proj
|
124 |
-
# self_attn.v_proj layers
|
125 |
-
- model.layers.26.self_attn.v_proj
|
126 |
-
- model.layers.17.self_attn.v_proj
|
127 |
-
- model.layers.28.self_attn.v_proj
|
128 |
-
- model.layers.3.self_attn.v_proj
|
129 |
-
- model.layers.29.self_attn.v_proj
|
130 |
-
- model.layers.21.self_attn.v_proj
|
131 |
-
- model.layers.16.self_attn.v_proj
|
132 |
-
- model.layers.15.self_attn.v_proj
|
133 |
-
|
134 |
-
# adapter: lora
|
135 |
-
# lora_model_dir:
|
136 |
-
# lora_r: 32
|
137 |
-
# lora_alpha: 16
|
138 |
-
# lora_dropout: 0.05
|
139 |
-
# lora_target_linear: true
|
140 |
-
# lora_fan_in_fan_out:
|
141 |
-
|
142 |
-
wandb_project: llama-3-8B-spectrum
|
143 |
-
wandb_entity:
|
144 |
-
wandb_watch:
|
145 |
-
wandb_name:
|
146 |
-
wandb_log_model:
|
147 |
-
|
148 |
-
gradient_accumulation_steps: 4
|
149 |
-
micro_batch_size: 4
|
150 |
-
num_epochs: 2
|
151 |
-
optimizer: paged_adamw_32bit
|
152 |
-
lr_scheduler: cosine
|
153 |
-
learning_rate: 0.0002
|
154 |
-
|
155 |
-
train_on_inputs: false
|
156 |
-
group_by_length: false
|
157 |
-
bf16: auto
|
158 |
-
fp16:
|
159 |
-
tf32: false
|
160 |
-
|
161 |
-
gradient_checkpointing: true
|
162 |
-
early_stopping_patience:
|
163 |
-
resume_from_checkpoint:
|
164 |
-
local_rank:
|
165 |
-
logging_steps: 1
|
166 |
-
xformers_attention:
|
167 |
-
flash_attention: true
|
168 |
-
|
169 |
-
warmup_steps: 100
|
170 |
-
eval_steps: 0.01
|
171 |
-
save_strategy: epoch
|
172 |
-
save_steps:
|
173 |
-
debug:
|
174 |
-
deepspeed: deepspeed_configs/zero2.json
|
175 |
-
weight_decay: 0.1
|
176 |
-
fsdp:
|
177 |
-
fsdp_config:
|
178 |
-
special_tokens:
|
179 |
-
pad_token: "<|end_of_text|>"
|
180 |
-
|
181 |
-
```
|
182 |
-
|
183 |
-
</details><br>
|
184 |
|
185 |
# Llama-3-8B-spectrum-25
|
186 |
|
187 |
-
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the
|
188 |
It achieves the following results on the evaluation set:
|
189 |
- Loss: 1.2791
|
190 |
|
191 |
-
##
|
|
|
|
|
192 |
|
193 |
-
|
194 |
|
195 |
-
##
|
|
|
|
|
196 |
|
197 |
-
More information needed
|
198 |
-
|
199 |
-
## Training and evaluation data
|
200 |
-
|
201 |
-
More information needed
|
202 |
-
|
203 |
-
## Training procedure
|
204 |
|
205 |
### Training hyperparameters
|
206 |
|
@@ -219,75 +50,16 @@ The following hyperparameters were used during training:
|
|
219 |
- lr_scheduler_warmup_steps: 100
|
220 |
- num_epochs: 2
|
221 |
|
222 |
-
### Training results
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
| 1.2189 | 0.0650 | 2 | 1.1976 |
|
228 |
-
| 1.0899 | 0.0976 | 3 | 1.1611 |
|
229 |
-
| 1.2787 | 0.1301 | 4 | 1.1385 |
|
230 |
-
| 1.1341 | 0.1626 | 5 | 1.1368 |
|
231 |
-
| 1.2793 | 0.1951 | 6 | 1.1228 |
|
232 |
-
| 1.2094 | 0.2276 | 7 | 1.1123 |
|
233 |
-
| 1.3289 | 0.2602 | 8 | 1.1126 |
|
234 |
-
| 1.1179 | 0.2927 | 9 | 1.1123 |
|
235 |
-
| 1.2456 | 0.3252 | 10 | 1.1109 |
|
236 |
-
| 1.2253 | 0.3577 | 11 | 1.1083 |
|
237 |
-
| 1.2563 | 0.3902 | 12 | 1.1079 |
|
238 |
-
| 1.3222 | 0.4228 | 13 | 1.1059 |
|
239 |
-
| 1.2197 | 0.4553 | 14 | 1.1080 |
|
240 |
-
| 1.1862 | 0.4878 | 15 | 1.1054 |
|
241 |
-
| 1.1136 | 0.5203 | 16 | 1.1040 |
|
242 |
-
| 1.2221 | 0.5528 | 17 | 1.1040 |
|
243 |
-
| 1.4475 | 0.5854 | 18 | 1.1049 |
|
244 |
-
| 1.0187 | 0.6179 | 19 | 1.1054 |
|
245 |
-
| 1.0596 | 0.6504 | 20 | 1.1057 |
|
246 |
-
| 1.2075 | 0.6829 | 21 | 1.1063 |
|
247 |
-
| 1.0671 | 0.7154 | 22 | 1.1062 |
|
248 |
-
| 1.2115 | 0.7480 | 23 | 1.1059 |
|
249 |
-
| 1.1137 | 0.7805 | 24 | 1.1061 |
|
250 |
-
| 1.5483 | 0.8130 | 25 | 1.1097 |
|
251 |
-
| 1.369 | 0.8455 | 26 | 1.1120 |
|
252 |
-
| 1.0528 | 0.8780 | 27 | 1.1155 |
|
253 |
-
| 1.2126 | 0.9106 | 28 | 1.1169 |
|
254 |
-
| 1.0164 | 0.9431 | 29 | 1.1167 |
|
255 |
-
| 1.2082 | 0.9756 | 30 | 1.1183 |
|
256 |
-
| 1.0256 | 1.0081 | 31 | 1.1191 |
|
257 |
-
| 0.6859 | 1.0407 | 32 | 1.1267 |
|
258 |
-
| 0.722 | 1.0732 | 33 | 1.1505 |
|
259 |
-
| 0.7161 | 1.1057 | 34 | 1.1719 |
|
260 |
-
| 0.724 | 1.1382 | 35 | 1.1829 |
|
261 |
-
| 0.67 | 1.1707 | 36 | 1.1844 |
|
262 |
-
| 0.5737 | 1.2033 | 37 | 1.1874 |
|
263 |
-
| 0.7081 | 1.2358 | 38 | 1.1940 |
|
264 |
-
| 0.7239 | 1.2683 | 39 | 1.1978 |
|
265 |
-
| 0.5927 | 1.3008 | 40 | 1.2022 |
|
266 |
-
| 0.6079 | 1.3333 | 41 | 1.2070 |
|
267 |
-
| 0.6427 | 1.3659 | 42 | 1.2104 |
|
268 |
-
| 0.506 | 1.3984 | 43 | 1.2134 |
|
269 |
-
| 0.4582 | 1.4309 | 44 | 1.2195 |
|
270 |
-
| 0.7492 | 1.4634 | 45 | 1.2208 |
|
271 |
-
| 0.538 | 1.4959 | 46 | 1.2258 |
|
272 |
-
| 0.7147 | 1.5285 | 47 | 1.2299 |
|
273 |
-
| 0.6565 | 1.5610 | 48 | 1.2339 |
|
274 |
-
| 0.8011 | 1.5935 | 49 | 1.2365 |
|
275 |
-
| 0.6986 | 1.6260 | 50 | 1.2396 |
|
276 |
-
| 0.7924 | 1.6585 | 51 | 1.2472 |
|
277 |
-
| 0.8128 | 1.6911 | 52 | 1.2542 |
|
278 |
-
| 0.6733 | 1.7236 | 53 | 1.2616 |
|
279 |
-
| 0.7363 | 1.7561 | 54 | 1.2693 |
|
280 |
-
| 0.5815 | 1.7886 | 55 | 1.2762 |
|
281 |
-
| 0.6571 | 1.8211 | 56 | 1.2750 |
|
282 |
-
| 0.6985 | 1.8537 | 57 | 1.2748 |
|
283 |
-
| 0.7519 | 1.8862 | 58 | 1.2715 |
|
284 |
-
| 0.8171 | 1.9187 | 59 | 1.2733 |
|
285 |
-
| 0.7373 | 1.9512 | 60 | 1.2791 |
|
286 |
|
287 |
|
288 |
### Framework versions
|
289 |
|
|
|
290 |
- Transformers 4.44.2
|
291 |
- Pytorch 2.4.0+cu121
|
292 |
- Datasets 2.20.0
|
293 |
-
- Tokenizers 0.19.1
|
|
|
5 |
tags:
|
6 |
- axolotl
|
7 |
- generated_from_trainer
|
8 |
+
- spectrum finetuning
|
9 |
+
- Deepspeed MultiGPU
|
10 |
model-index:
|
11 |
- name: Llama-3-8B-spectrum-25
|
12 |
results: []
|
|
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Llama-3-8B-spectrum-25
|
20 |
|
21 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [yuvraj17/finetune_alpaca_1K](https://huggingface.co/datasets/yuvraj17/finetune_alpaca_1K) dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 1.2791
|
24 |
|
25 |
+
## Spectrum Fine-tuning:
|
26 |
+
I have used the **Spectrum Fine-tuning** method as described in [Eric Hartford et. al 2024](https://arxiv.org/abs/2406.06623), which selectively targets some ***t%*** of the model layers with the highest **Signal-to-Noise Ratio (SNR)**. By focusing on the most information-dense layers, this approach maximizes fine-tuning efficiency while minimizing compute resources.
|
27 |
+
The key goal of Spectrum Fine-tuning is: *minimize the memory footprint and accelerate LLM training without sacrificing performance.*
|
28 |
|
29 |
+
The 25% layer selection ensures minimal computational overhead for fine-tuning.
|
30 |
|
31 |
+
## Training:
|
32 |
+
- Trained on **2x A40s (48GB VRAM each)** for over 1 hour using the **Axolotl**.
|
33 |
+
- Fine-tuning aimed to optimize the balance between model performance and resource efficiency, demonstrating how targeted spectrum fine-tuning can deliver substantial improvements without the need for full-scale model adjustments.
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
### Training hyperparameters
|
37 |
|
|
|
50 |
- lr_scheduler_warmup_steps: 100
|
51 |
- num_epochs: 2
|
52 |
|
|
|
53 |
|
54 |
+
![Train/loss Curve Image](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/eSBh0SmeGYYUfx9pKgMIv.png)
|
55 |
+
|
56 |
+
![eval/loss Curve Image](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/xNslkLH1pKot7tzWtIiu9.png)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
### Framework versions
|
60 |
|
61 |
+
- Axolotl 0.4.0
|
62 |
- Transformers 4.44.2
|
63 |
- Pytorch 2.4.0+cu121
|
64 |
- Datasets 2.20.0
|
65 |
+
- Tokenizers 0.19.1
|