yuvraj17 commited on
Commit
0da9f78
1 Parent(s): b5be075

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -175
README.md CHANGED
@@ -1,199 +1,88 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
 
 
 
 
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - dpo
5
+ - rlhf
6
+ - trl
7
+ license: apache-2.0
8
+ language:
9
+ - en
10
+ pipeline_tag: text-generation
11
  ---
12
 
13
+ # Llama3-8B-SuperNova-Spectrum-Hermes-DPO
14
 
15
+ This model is a **DPO fine-tuned** version of my `DARE_TIES` merged Model [`yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties`](https://huggingface.co/yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties) on the [yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k](https://huggingface.co/datasets/yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k) dataset.
16
 
17
+ ## DPO (Direct Preference Optimization):
18
 
19
+ Direct Preference Optimization (DPO) is a fine-tuning technique that focuses on aligning a model's responses with human preferences or ranking data without requiring reinforcement learning steps, like in RLHF.
20
 
21
+ <figure>
22
 
23
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/kHcU5dkcSVqxEIWt_GRUB.png" width="1000" height="768">
24
+ <figcaption> DPO vs RLHF <a href="//arxiv.org/abs/2305.18290">Reference</a> </figcaption>
25
 
26
+ </figure>
27
 
28
+ ## Training:
29
 
30
+ - Trained on **1x A40s (48GB VRAM)** using the [HuggingFace TRL](https://huggingface.co/docs/trl/index).
31
+ - **QLoRA**(`4-bit precision`) for 1 epoch
32
+ ```
33
+ # LoRA configuration
34
+ peft_config = LoraConfig(
35
+ r=32,
36
+ lora_alpha=16,
37
+ lora_dropout=0.05,
38
+ bias="none",
39
+ task_type="CAUSAL_LM",
40
+ target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
41
+ )
42
+ ```
43
+ ### Training Params
44
 
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - beta=0.1
48
+ - num_devices: 1
49
+ - gradient_accumulation_steps: 4
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_steps: 100
53
+ - num_epochs: 1
54
 
55
+ ### Training Time = **1:57:00** hours
56
 
57
+ ### Weight & Biases Report
 
 
58
 
59
+ [Report-Link](https://api.wandb.ai/links/my-sft-team/d211juao)
60
 
61
+ ## 💻 Usage
62
 
63
+ ```python
64
+ !pip install -qU transformers accelerate
65
 
66
+ from transformers import AutoTokenizer
67
+ import transformers
68
+ import torch
69
 
70
+ model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO"
71
+ messages = [{"role": "user", "content": "What is a large language model?"}]
72
 
73
+ tokenizer = AutoTokenizer.from_pretrained(model)
74
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
75
+ pipeline = transformers.pipeline(
76
+ "text-generation",
77
+ model=model,
78
+ torch_dtype=torch.float16,
79
+ device_map="auto",
80
+ )
81
 
82
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
83
+ print(outputs[0]["generated_text"])
84
+ ```
85
 
86
+ ## 🏆 Evaluation Scores
87
 
88
+ Coming Soon