File size: 13,038 Bytes
5e98f64
947f03b
 
 
5e98f64
 
 
 
 
 
 
947f03b
 
 
 
0e081d5
947f03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e98f64
 
 
 
ccdfe0e
5e98f64
 
 
 
bc6cbd8
 
 
 
 
 
 
 
a33aade
ccdfe0e
 
 
 
 
 
 
 
 
bc6cbd8
 
 
 
 
 
 
ccdfe0e
 
 
bc6cbd8
 
ccdfe0e
 
bc6cbd8
5e98f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6cbd8
 
ca561c2
 
 
 
 
 
 
 
 
bc6cbd8
998d15b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6cbd8
 
 
998d15b
947f03b
a33aade
947f03b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
---
language:
- en
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- yuvraj17/Llama-3-8B-spectrum-25
- ruggsea/Llama3-stanford-encyclopedia-philosophy-QA
- arcee-ai/Llama-3.1-SuperNova-Lite
base_model:
- yuvraj17/Llama-3-8B-spectrum-25
- ruggsea/Llama3-stanford-encyclopedia-philosophy-QA
- arcee-ai/Llama-3.1-SuperNova-Lite
pipeline_tag: text-generation
model-index:
- name: Llama3-8B-SuperNova-Spectrum-dare_ties
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 40.13
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 23.49
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 7.4
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.36
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.0
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties
      name: Open LLM Leaderboard
---

# Llama3-8B-SuperNova-Spectrum-dare_ties

Llama3-8B-SuperNova-Spectrum-dare_ties is a `dare_ties` merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [yuvraj17/Llama-3-8B-spectrum-25](https://huggingface.co/yuvraj17/Llama-3-8B-spectrum-25)
* [ruggsea/Llama3-stanford-encyclopedia-philosophy-QA](https://huggingface.co/ruggsea/Llama3-stanford-encyclopedia-philosophy-QA)
* [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite)

## DARE_TIES Merging

### TIES Merging

[TIES](https://arxiv.org/abs/2306.01708) Merging, introduced by Yadav et al. (2023), is a method for merging multiple specialized models into one general-purpose model. It solves two key challenges:
* **Redundancy Removal**: Identifies and eliminates overlapping or unnecessary information between models, making the final model more efficient.
* **Conflict Resolution**: Reconciles differences between models by creating a unified sign vector that represents the most dominant direction of change across all models.

**TIES** stands for **T**R**I**M, **E**LECT **S**IGN & MERGE (TIES-MERGING). 

<figure>

  <img src="https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/2vBgcGko-tcsaAkLUzHnU.png" width="1000" height="768">
  <figcaption> How TIES-Merging Works <a href="//arxiv.org/pdf/2306.01708">Reference</a> </figcaption>

</figure>


### DARE Merging

Introduced by Yu et al. (2023), [DARE](https://arxiv.org/abs/2311.03099) uses an approach similar to TIES with two main differences:

* **Weight Pruning**: Randomly resets some fine-tuned weights to their original values, reducing model complexity.
* **Weight Scaling**: Adjusts the remaining weights by scaling and combining them with the base model's weights to maintain consistent performance.

**DARE** stands for **D**ROP **A**ND **RE**SCALE

Mergekit’s implementation of DARE-Merging has two flavours: with the sign election step of TIES (`dare_ties`) or without (`dare_linear`). I have chosen `dare_ties` for this merge.

For more information refer this [Merge Large Language Models with MergeKit by Maxime Labonne](https://towardsdatascience.com/merge-large-language-models-with-mergekit-2118fb392b54)
 
Also, if you want to get in-depth knowledge about Model-Merging and its different types, I highly recommend this [YouTube Video by Julien Simon](https://youtu.be/cvOpX75Kz4M?si=d5crVWSxcjvNUm6a)

## 🧩 Configuration

```yaml
models:
  - model: NousResearch/Meta-Llama-3-8B
    # No parameters necessary for base model
  - model: yuvraj17/Llama-3-8B-spectrum-25
    parameters:
      density: 0.56
      weight: 0.12
  - model: ruggsea/Llama3-stanford-encyclopedia-philosophy-QA
    parameters:
      density: 0.56
      weight: 0.12
  - model: arcee-ai/Llama-3.1-SuperNova-Lite
    parameters:
      density: 0.58
      weight: 0.55
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

> A large language model is a type of artificial intelligence (AI) model designed to understand and generate human language. It is trained on a massive corpus of text data, which it uses to learn patterns and relationships between words and concepts.
> Large language models are typically based on a deep learning approach called transformer architecture, which was introduced by the Google research paper "Attention Is All You Need" (2017). These models are designed to handle the complexity of natural language by capturing long-range dependencies and contextual relationships between words.
> Large language models can perform a variety of tasks, including:
> - Natural language processing (NLP): large language models can understand and generate text, and can be used for tasks such as text classification, sentiment analysis, and named entity recognition.
> - Text generation: large language models can generate human-like text, such as chatbots, language translation, and text summarization.
> - Question answering: large language models can answer questions based on the text they have been trained on.
> - Conversational AI: large language models can be used to create conversational agents that can understand and respond to user input.


## 🏆 Evaluation Scores

### Nous

|                                                     Model                                                      |AGIEval|TruthfulQA|Bigbench|
|----------------------------------------------------------------------------------------------------------------|------:|---------:|-------:|
|[Llama3-8B-SuperNova-Spectrum-dare_ties](https://huggingface.co/yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties)|  38.32|     57.15|   43.91|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |20.47|±  |  2.54|
|                              |       |acc_norm|18.50|±  |  2.44|
|agieval_logiqa_en             |      0|acc     |35.94|±  |  1.88|
|                              |       |acc_norm|35.64|±  |  1.88|
|agieval_lsat_ar               |      0|acc     |21.74|±  |  2.73|
|                              |       |acc_norm|20.00|±  |  2.64|
|agieval_lsat_lr               |      0|acc     |41.37|±  |  2.18|
|                              |       |acc_norm|40.98|±  |  2.18|
|agieval_lsat_rc               |      0|acc     |59.11|±  |  3.00|
|                              |       |acc_norm|56.13|±  |  3.03|
|agieval_sat_en                |      0|acc     |63.59|±  |  3.36|
|                              |       |acc_norm|60.19|±  |  3.42|
|agieval_sat_en_without_passage|      0|acc     |40.29|±  |  3.43|
|                              |       |acc_norm|37.38|±  |  3.38|
|agieval_sat_math              |      0|acc     |38.64|±  |  3.29|
|                              |       |acc_norm|37.73|±  |  3.28|

Average: 38.32%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |38.43|±  |   1.7|
|             |       |mc2   |57.15|±  |   1.5|

Average: 57.15%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|58.42|±  |  3.59|
|bigbench_date_understanding                     |      0|multiple_choice_grade|70.73|±  |  2.37|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|30.23|±  |  2.86|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|47.35|±  |  2.64|
|                                                |       |exact_str_match      | 0.00|±  |  0.00|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|29.00|±  |  2.03|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|21.00|±  |  1.54|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|51.33|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|33.20|±  |  2.11|
|bigbench_navigate                               |      0|multiple_choice_grade|55.40|±  |  1.57|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|66.35|±  |  1.06|
|bigbench_ruin_names                             |      0|multiple_choice_grade|45.76|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|28.26|±  |  1.43|
|bigbench_snarks                                 |      0|multiple_choice_grade|62.43|±  |  3.61|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|50.30|±  |  1.59|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|48.00|±  |  1.58|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|23.60|±  |  1.20|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|17.66|±  |  0.91|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|51.33|±  |  2.89|

Average: 43.91%



## Special thanks & Reference
- Maxime Labonne for their easy-to-use colab-notebook [Merging LLMs with MergeKit](https://github.com/mlabonne/llm-course/blob/main/Mergekit.ipynb), [Blog](https://towardsdatascience.com/merge-large-language-models-with-mergekit-2118fb392b54) and [LLM-AutoEva Notebookl](https://github.com/mlabonne/llm-autoeval)
- Authors of [Mergekit](https://github.com/arcee-ai/mergekit)

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_yuvraj17__Llama3-8B-SuperNova-Spectrum-dare_ties)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |19.00|
|IFEval (0-Shot)    |40.13|
|BBH (3-Shot)       |23.49|
|MATH Lvl 5 (4-Shot)| 7.40|
|GPQA (0-shot)      | 3.36|
|MuSR (0-shot)      |11.00|
|MMLU-PRO (5-shot)  |28.60|