Text Generation
Transformers
Safetensors
Chinese
English
qwen
conversational
custom_code
yuyijiong commited on
Commit
e9fa20d
·
1 Parent(s): 80bac1f

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +9 -0
  2. README_en.md +19 -9
README.md CHANGED
@@ -11,6 +11,7 @@ pipeline_tag: text-generation
11
  ---
12
  **Read this in other languages: [English](README_en.md), [中文](README.md).**
13
 
 
14
  * 2023.12.16更新:发布[论文(中文版)](https://cloud.tsinghua.edu.cn/d/5894ec4442e54a6aac96/)、[论文(英文版)](https://arxiv.org/abs/2312.11193)
15
  * 2023.12.14更新:发布经过微调的Qwen-14b-chat-yarn-32k,微调后的模型能适应32k长度(约4万汉字)的中英问答,相较于之前的通过位置插值得到的32k模型,几乎完全解决了多文档问答任务下召回率低(即 lost in middle 现象)的问题。
16
  <br>
@@ -31,6 +32,14 @@ pipeline_tag: text-generation
31
  | LongAlpaca-7b-32k-chinese-v2 | 0.12 |
32
  | CausalLM-14b | 0.086 |
33
 
 
 
 
 
 
 
 
 
34
  Qwen-14b-chat-yarn-32k经过微调后,在多文档问答(或检索)任务上提升非常显著,大幅领先其他同规模的模型。
35
 
36
  <br>
 
11
  ---
12
  **Read this in other languages: [English](README_en.md), [中文](README.md).**
13
 
14
+ * 2023.12.23更新:发布LongBench的passage_retrieval_en的评测结果
15
  * 2023.12.16更新:发布[论文(中文版)](https://cloud.tsinghua.edu.cn/d/5894ec4442e54a6aac96/)、[论文(英文版)](https://arxiv.org/abs/2312.11193)
16
  * 2023.12.14更新:发布经过微调的Qwen-14b-chat-yarn-32k,微调后的模型能适应32k长度(约4万汉字)的中英问答,相较于之前的通过位置插值得到的32k模型,几乎完全解决了多文档问答任务下召回率低(即 lost in middle 现象)的问题。
17
  <br>
 
32
  | LongAlpaca-7b-32k-chinese-v2 | 0.12 |
33
  | CausalLM-14b | 0.086 |
34
 
35
+ ### LongBench的passage_retrieval_en的评测结果
36
+ | 模型 | 得分 (acc) |
37
+ |------------------------|----------|
38
+ | **Qwen-14b-chat-yarn-32k** | **0.945** |
39
+ | Qwen-14b-chat | 0.24 |
40
+ | chatglm3-32k | 0.815 |
41
+ | gpt-3.5-turbo-16k | 0.88 |
42
+
43
  Qwen-14b-chat-yarn-32k经过微调后,在多文档问答(或检索)任务上提升非常显著,大幅领先其他同规模的模型。
44
 
45
  <br>
README_en.md CHANGED
@@ -11,6 +11,7 @@ pipeline_tag: text-generation
11
  ---
12
  **Read this in other languages: [English](README_en.md), [中文](README.md).**
13
 
 
14
  * Updated on December 16, 2023: Release [Paper](https://arxiv.org/abs/2312.11193)
15
  * Updated on December 14, 2023: We have released the Qwen-14b-chat-yarn-32k model, which has been fine-tuned to handle Chinese and English question-answering tasks with a length of up to 32k (approximately 40,000 Chinese characters). This model addresses the low recall issue in multi-document question-answering tasks (also known as the "lost in middle" phenomenon) that was present in the previous 32k model obtained through position interpolation. <br>
16
  <br>
@@ -20,15 +21,24 @@ pipeline_tag: text-generation
20
  # Evaluation results in LongBench
21
  ### Evaluation results for passage_retrieval_zh in LongBench
22
 
23
- | Models | Accuracy |
24
- |--------------------------------------|----------|
25
- | **Qwen-14b-chat-yarn-32k** | **0.94** |
26
- | gpt-3.5-turbo-16k | 0.81 |
27
- | chatglm3-32k | 0.725 |
28
- | Qwen-14b-chat (use_dynamic_ntk=True) | 0.525 |
29
- | Qwen-14b-chat-32k-lora | 0.34 |
30
- | LongAlpaca-7b-32k-chinese-v2 | 0.12 |
31
- | CausalLM-14b | 0.086 |
 
 
 
 
 
 
 
 
 
32
 
33
  Qwen-14b-chat-yarn-32k has shown significant improvement in multi-document question-answering (or retrieval) tasks and outperforms other models of similar scale.
34
  <br>
 
11
  ---
12
  **Read this in other languages: [English](README_en.md), [中文](README.md).**
13
 
14
+ * Updated on December 23, 2023: Release the evaluation results of passage_retrieval_en in LongBench
15
  * Updated on December 16, 2023: Release [Paper](https://arxiv.org/abs/2312.11193)
16
  * Updated on December 14, 2023: We have released the Qwen-14b-chat-yarn-32k model, which has been fine-tuned to handle Chinese and English question-answering tasks with a length of up to 32k (approximately 40,000 Chinese characters). This model addresses the low recall issue in multi-document question-answering tasks (also known as the "lost in middle" phenomenon) that was present in the previous 32k model obtained through position interpolation. <br>
17
  <br>
 
21
  # Evaluation results in LongBench
22
  ### Evaluation results for passage_retrieval_zh in LongBench
23
 
24
+ | Models | Accuracy |
25
+ |------------------------------|----------|
26
+ | **Qwen-14b-chat-yarn-32k** | **0.94** |
27
+ | gpt-3.5-turbo-16k | 0.81 |
28
+ | chatglm3-32k | 0.725 |
29
+ | Qwen-14b-chat | 0.525 |
30
+ | Qwen-14b-chat-32k-lora | 0.34 |
31
+ | LongAlpaca-7b-32k-chinese-v2 | 0.12 |
32
+ | CausalLM-14b | 0.086 |
33
+
34
+ ### Evaluation results for passage_retrieval_en in LongBench
35
+ | Models | Accuracy |
36
+ |------------------------|----------|
37
+ | **Qwen-14b-chat-yarn-32k** | **0.945** |
38
+ | Qwen-14b-chat | 0.24 |
39
+ | chatglm3-32k | 0.815 |
40
+ | gpt-3.5-turbo-16k | 0.88 |
41
+
42
 
43
  Qwen-14b-chat-yarn-32k has shown significant improvement in multi-document question-answering (or retrieval) tasks and outperforms other models of similar scale.
44
  <br>