File size: 1,672 Bytes
46f8dde
 
 
 
2b4b84e
 
46f8dde
 
 
2b4b84e
 
46f8dde
 
 
 
 
 
 
 
 
 
 
2b4b84e
46f8dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: other
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- ruozhiba
base_model: 01-ai/Yi-6B
model-index:
- name: Yi-6B-ruozhiba-5e-5-50
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Yi-6B-ruozhiba-5e-5-50

This model is a fine-tuned version of [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) on the ruozhiba dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1352

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6668        | 2.0   | 110  | 1.8270          |
| 1.5865        | 3.0   | 165  | 1.8256          |
| 1.264         | 4.0   | 220  | 1.9826          |
| 0.99          | 5.0   | 275  | 2.2128          |
| 0.7218        | 6.0   | 330  | 2.5388          |
| 0.5291        | 7.0   | 385  | 2.7745          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2