File size: 13,759 Bytes
21a1d5f |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9bdaa0700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9bdaa0790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9bdaa0820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9bdaa08b0>", "_build": "<function ActorCriticPolicy._build at 0x7ff9bdaa0940>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9bdaa09d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9bdaa0a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9bdaa0af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9bdaa0b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9bdaa0c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9bdaa0ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9bdaa0d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9bdaa47c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689048847935641884, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMecb3DBQa6hVNRO3PLMja7QAM7rTp3ugAAgD8AAIA/gG1HvcOhe7pF2RW4Pcavs5AFTzv+JCs3AACAPwAAgD9NdSu9rpXbujDTkzzzjIA89tzgu2sCXD0AAIA/AACAPwZJLL7poF0/MzUJPgS/iL6g7ca8ZBONPQAAAAAAAAAAAFhxvQNjC7z8T0o9/m7SvQm5MLsLg2C+AACAPwAAgD/mCRq9SyBcP26dgD0JWp++NQLjusK5ADwAAAAAAAAAAJobDLzosLE/AGxWvh/JiL7LZhY6brklvQAAAAAAAAAAZnB0vBzSebxs0SC9Y5c/vbBG0D2/Nkk+AACAPwAAgD/m6x09/tApP19UnL2deJe+8H5GvPGaF70AAAAAAAAAAM44nL6PQFI/RJA7PFJDqb7rP+W9kpgOPQAAAAAAAAAA84GFPRH1oD+ylIQ+9I+bvmGo1D0W4UU+AAAAAAAAAACm7vw9vM62Py424j70R1K+Pxz3PRU+kj4AAAAAAAAAAI0rv71/Eqg/708fvxvh4L7FnJO9AK+evgAAAAAAAAAAZqn6PF6Mrz+odLM+Xo6fvj779TsRxhI+AAAAAAAAAAAt2wo+rhfVuncdKzyT9J+5R0/ru4VCLroAAIA/AACAP81Tmrxc3zu6yZAhNA6fJ6/pgA67RNaZswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyVOdoWYWuMAWyUTSUBjAF0lEdAlpaI2GZeA3V9lChoBkdAciZWgezUqmgHTZ4BaAhHQJaXB5LRKHx1fZQoaAZHQG5KsxXXAdpoB00/AWgIR0CWmGTAWSEEdX2UKGgGR0BwsWjN6gM+aAdNUgFoCEdAlpmZgXuVo3V9lChoBkdAbkxUz9CNTGgHTTABaAhHQJaZqZiNKiB1fZQoaAZHQG9brh73PAxoB01YAWgIR0CWmd4lQdjodX2UKGgGR0BvH6QJXyRTaAdNIgFoCEdAlpoFsP8Q7XV9lChoBkdAcOiH0K7ZnWgHTTEBaAhHQJaaJ2Qnx8V1fZQoaAZHQG7qmHP/rB1oB00/AWgIR0CWmoPJaJQ+dX2UKGgGR0BwRoLPUrkKaAdNIgFoCEdAlpq8j3VTaXV9lChoBkdAcmCGmUGFBmgHTWcBaAhHQJac0pH7P6d1fZQoaAZHQHCUA9ic5KhoB02bAWgIR0CWneNpdrwfdX2UKGgGR0BxkrgTAWSEaAdNNQFoCEdAlp4uWrwOOXV9lChoBkdAQ7GNipeeF2gHS/FoCEdAlp+5yQxN7HV9lChoBkdAcveYeT3Zf2gHTUkBaAhHQJagqp2ll9V1fZQoaAZHQHA9mkWRA8loB00RAWgIR0CWocgow22odX2UKGgGR0BxTtwEQoTgaAdNdgFoCEdAlqHcvM8oyHV9lChoBkdAbxXg3Lmp2mgHTXYBaAhHQJajSeUY8+11fZQoaAZHQHCr03wTdtVoB01hAWgIR0CWo6OW0JF9dX2UKGgGR0Bx8aT4cm0FaAdNRgFoCEdAlqS1ENOM2nV9lChoBkdAb8UiSJTESGgHTXABaAhHQJa2boEB8x91fZQoaAZHQHAWlHz6JqJoB01pAWgIR0CWt4wvg3tKdX2UKGgGR0BzPPpzLfUGaAdNpAFoCEdAlrkzkp7TlXV9lChoBkdAbs+kvboKUmgHTb8BaAhHQJa5zS3LFGZ1fZQoaAZHQHDroCp3os9oB01gAWgIR0CWulrPMSsbdX2UKGgGR0Bxm2wzLwF1aAdNWQFoCEdAlruOtGNJe3V9lChoBkdAcko/CqIacmgHTQoCaAhHQJa9gAEMb3p1fZQoaAZHQHCLxbGFSKpoB017AWgIR0CWvYFfzBhydX2UKGgGR0BytwnH/95yaAdNOQFoCEdAlr27nDBMz3V9lChoBkdAbrxWGRFI/mgHTT0BaAhHQJbAlIOH3111fZQoaAZHQHIVcnmaH9FoB02rAWgIR0CWwTsEq2BrdX2UKGgGR0BsouA3DNyHaAdNNgFoCEdAlsHfGp++d3V9lChoBkdAcJ6t8uzyBmgHTSkBaAhHQJbExx0dRzl1fZQoaAZHQG7m1PWQOnVoB03LAWgIR0CWxlI6r/83dX2UKGgGR0ByiPD2rXDnaAdNugFoCEdAlsglOj7AL3V9lChoBkdAb9ziFTNt7GgHTUEBaAhHQJbJfguRLbp1fZQoaAZHQHBy2IO6NERoB00UAmgIR0CWyoTtb9qDdX2UKGgGR0Bw45lyzXz2aAdNGgFoCEdAlsxPttygf3V9lChoBkdAcdHnFYMfBGgHTXsBaAhHQJbPsIsyzol1fZQoaAZHQGzNTAWSEDhoB01nAWgIR0CW0ZaaCtihdX2UKGgGR0Bt9yO7xusLaAdNTAFoCEdAltSlbqyGBXV9lChoBkdAcyFy6+WWyGgHTUQCaAhHQJbU9WFN+LF1fZQoaAZHQG1/t4JNTLpoB011AWgIR0CW2DfaHsTndX2UKGgGR0Bwqnd9Dx9YaAdN5QFoCEdAlthZXEIgNnV9lChoBkdAYXYR+z+m32gHTegDaAhHQJbYvdBSk0t1fZQoaAZHQG83WGATZg5oB01AAWgIR0CW2SWxyGSIdX2UKGgGR0BvMpbpu/DcaAdNLQFoCEdAltqshPj4pXV9lChoBkdAbLu0tyxRmGgHTXwBaAhHQJba1ZkkKNR1fZQoaAZHQG4easp5NXZoB01XAWgIR0CW3S6HCXQddX2UKGgGR0BvM3CdjG1haAdN1AJoCEdAlt5nM2WIGnV9lChoBkdAcG710T101mgHTWIBaAhHQJbe2n752yN1fZQoaAZHQHDUqOxSpBJoB03tAWgIR0CW4gVmSQo1dX2UKGgGR0BuPrvgFX7taAdNOAFoCEdAluMhLGrCFnV9lChoBkdAcZ+UJfICEGgHTW4BaAhHQJbjM4LkS291fZQoaAZHQHB5BJVbRnhoB01vAWgIR0CW5VwNLDhtdX2UKGgGR0BtpcLH+6y0aAdNMgFoCEdAluYEf5k9U3V9lChoBkdAboVOObRWtGgHTSYBaAhHQJb4cVeruIB1fZQoaAZHQHBFE4JeE7JoB013AWgIR0CW+jJ7sv7FdX2UKGgGR0Bs6tKujh1laAdNZwFoCEdAlvul1GLDRHV9lChoBkdAa9fxkupS8GgHTagBaAhHQJb8JbD/EO11fZQoaAZHQGMthbW3BpJoB03oA2gIR0CW/WlXA/LUdX2UKGgGR0BwEJjVhCtzaAdNTAFoCEdAlv8VGG21D3V9lChoBkdAcTS4yoGY8mgHTXwCaAhHQJb/7kiliz91fZQoaAZHQHHkPIGQjlhoB00VAmgIR0CXA7dGAkLQdX2UKGgGR0BwbXvH93r2aAdNRAFoCEdAlwTT7655JXV9lChoBkdAbRAyX2M85mgHTbYBaAhHQJcGJJe3QUp1fZQoaAZHQHMYmBFuvU1oB01qAWgIR0CXB0E/SpirdX2UKGgGR0BbEd+CsfaIaAdN6ANoCEdAlwdigTRIBnV9lChoBkdAb7zCl7+kxmgHTRICaAhHQJcJOO6unuR1fZQoaAZHQG4ueZgG8mNoB02mAWgIR0CXCVOVPepGdX2UKGgGR0Bw5rD0lJHzaAdNLgFoCEdAlwm9UGVzIXV9lChoBkdAcMmiD/VAiWgHTZUBaAhHQJcMLjOs1bd1fZQoaAZHQHHNPG6wt8NoB00mAWgIR0CXDSEoOQQudX2UKGgGR0BxgJ9Aood/aAdNGwFoCEdAlw20qDsdDXV9lChoBkdAcp7q5LAYYWgHTdsBaAhHQJcQGJ3xFy91fZQoaAZHQG/hHxBmf5FoB01BAWgIR0CXEShfBvaUdX2UKGgGR0ByMcN7SiM6aAdNJAFoCEdAlxKdTYNAknV9lChoBkdAck4DaoMrmWgHTcwBaAhHQJcT13iaRZF1fZQoaAZHQHFqP8EV32VoB00aAWgIR0CXE9do371qdX2UKGgGR0Bvz7Kq4pc5aAdN0gFoCEdAlxbChi9ZinV9lChoBkdAcGSmoBJZn2gHTUkBaAhHQJcWwkxASnN1fZQoaAZHQHCyO8kD6nBoB006AWgIR0CXF4vddmg8dX2UKGgGR0BxYAl1KXfJaAdNRQFoCEdAlxfvluFYdXV9lChoBkdAb3DuF6AvtmgHTUcCaAhHQJcX8My8BdV1fZQoaAZHQGxXcuSOinJoB00lAWgIR0CXGNJrLyMDdX2UKGgGR0BxCBbr1M/RaAdNYQFoCEdAlxlLhm5DqnV9lChoBkdAcWzNLlFMI2gHTb0BaAhHQJcZleeFtbd1fZQoaAZHP//n/1g6U7loB0vwaAhHQJccEdZJTVF1fZQoaAZHQHF/wAZKnNxoB005AWgIR0CXHIjBVMmGdX2UKGgGR0BxnfRXwLE2aAdNJAFoCEdAlxy9G7SRbXV9lChoBkdAbUJkn1Fpf2gHTX0BaAhHQJcdBEqlP8B1fZQoaAZHQHBhGpIczZZoB00aAWgIR0CXIsFVT72tdX2UKGgGR0Bx76SGJvYOaAdNPwFoCEdAlyMuGsV+JHV9lChoBkdAb+ZJiAlOXWgHTSQBaAhHQJcjPQHAymB1fZQoaAZHQHKMX9R77bdoB00tAmgIR0CXI9vG6wt8dX2UKGgGR0Bwt/6fra/RaAdNfQFoCEdAlyb1Dv3JxXV9lChoBkdAcjplANXo1WgHTVIBaAhHQJcnJadMCcR1fZQoaAZHQHFZWPkq+aloB03eAWgIR0CXJ3NATqSpdX2UKGgGR0BuqiTINmUXaAdNVgFoCEdAlye1TBInSnV9lChoBkdAcKlTDO1OTWgHTXEBaAhHQJcn5cgQpWp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |